Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности теплообмена в ЖРД

Ранее подчеркивалась ведущая роль концентрации дискретных частиц для процессов механики, аэродинамики и теплообмена (гл. 1-10). Покажем, что при анализе особенностей теплообменных аппаратов влияние концентрации проявляется не менее значительно, определяя принципиальные возможности, преимущества и недостатки рассматриваемой группы теплообменников.  [c.360]

Общие свойства меди и ее сплавов. Медь, помимо широкого применения в технике по причине ее высокой электропроводности, используется в химическом машиностроении в качестве конструкционного материала для изготовления разнообразной химической аппаратуры и в особенности теплообменной аппаратуры (выпарные аппараты,теплообменники,конденсаторы, испарители, змеевики и т. п.). Объясняется это высокой теплопроводностью меди и ее сплавов, их благоприятными физико-механическими свойствами при достаточно высокой  [c.245]


В теплообменниках с внутренними источниками энергии применяются не два, как обычно, а оДин теплоноситель, который отводит теплоту, выделенную в самом аппарате. Примером таких аппаратов могут служить ядерные реакторы, электронагреватели и другие устройства. Независимо от принципа действия теплообменные аппараты, применяющиеся в различных областях техники, как правило, имеют свои специальные названия. Эти названия определяются технологическим назначением и конструктивными особенностями теплообменных устройств. Однако с теплотехнической точки зрения все аппараты имеют одно назначение — передачу теплоты от одного теплоносителя к другому или поверхности твердого тела к движущимся теплоносителям. Последнее и определяет те общие положения, которые лежат в основе теплового расчета любого теплообменного аппарата.  [c.442]

Рассмотрим кратко основные особенности теплообменного оборудования отечественных паротурбинных установок. Более подробно остановимся на его конструкциях для современных крупных блочных турбоустановок.  [c.39]

Благодаря анодной защите титан становится лучшим конструкционным материалом для изготовления оборудования в некоторых производствах, связанных с серной и другими минеральными кислотами умеренных концентраций, и особенно теплообменного оборудования.  [c.126]

Регулярные неравномерности могут быть связаны со следующими конструктивными особенностями теплообменного аппарата  [c.149]

У) Все наблюденные изменения скорости обязаны трению и особенно теплообмену между воздухом и стенками трубы.  [c.65]

Как видно из примера, даже при низких температурах вклад излучения в теплообмен между поверхностью и газом может быть значительным, особенно при низкой интенсивности теплоотдачи конвекцией.  [c.97]

В книге с единых позиций освещаются особенности гидродинамики и теплообмена в псевдоожиженном (кипящем) слое при повышении давления — одном из эффективных средств интенсификации процессов в нем. Большое внимание уделено слоям из крупных частиц, в которых влияние давления наиболее существенно. Рассмотрен теплообмен слоя под давлением с пучками труб различной геометрии, что особенно актуально в связи с перспективой использования псевдоожиженного слоя, в том числе и под давлением, как отвечающего современным экологическим требованиям способа сжигания твердого топлива. Рассмотрен лучистый теплообмен, существенный в высокотемпературном слое.  [c.2]

Достоинство псевдоожиженных систем — высокая интенсивность теплообмена между слоем и омываемыми им поверхностями. Особенно большие значения коэффициентов теплообмена даже при осуществлении процесса псевдоожижения в обычных условиях достигаются в слоях мелкодисперсных частиц. Многочисленные экспериментальные исследования подробно изложены в ряде монографий [12, 18, 20, 49, 50]. При этом механизм переноса тепла, в котором, безусловно, главная роль принадлежит теплопроводности системы, сложен и много- образен. Поэтому теории, объясняющей влияние всех факторов на теплообмен, до сих пор не существует. Однако отдельные аналитические модели не только качественно правильно отражают особенности внешнего теплообмена в псевдоожиженном слое, но и при определенных условиях позволяют делать удовлетворительные количественные оценки.  [c.57]


Несмотря на неплохое соответствие расчетных коэффициентов теплообмена по формулам (3.30) и (3.31) (при этом использовались значения порозности, полученные в тех же опытах) и собственным экспериментальным данным, приведенные уравнения вряд ли будут удовлетворительно описывать теплообмен более крупных частиц и особенно в случае псевдоожижения под давлением, так как в рих, очевидно, гиперболизирована конвективная составляющая, или, вернее, завышена роль входящих в нее сомножителей диаметра частиц, теплоемкости и плотности газа (все с показателем степени, равным 1). Противоречивым является запись уравнения (3.31) с одной стороны, рекомендуется пользоваться оптимальной скоростью фильтрации газа при определении max, ЧТО, безусловно, правильно, с другой—принимается т — Шо, ЧТО предполагает максимальное значение  [c.80]

Они находят применение в конструкциях воздуховодов промышленных зданий, особенно фабрик и заводов пищевой и химической промышленности, в конструкциях змеевиков, служащих для поверхностного теплообмена, где теплообмен совершается между газообразными или жидкими веществами, движущимися по трубам и находящимися или протекающими вне труб. Такие змеевики устанавливают в варочных котлах, теплообменниках, холодильниках, конденсаторах, выпарных аппаратах, перегонных кубах и t. п.  [c.184]

Сквозные дисперсные потоки могут быть использованы не только как теплоносители, но и как новое рабочее тело с характерными особенностями и возможностями. Огромная удельная поверхность мелко диспергированных частиц (например, графитовой пыли) и высокая интенсивность внутреннего, межкомпонентного теплообмен м окажут несомненное влияние на температуру газового компонента при его расширении в турбине или сжатии в компрессоре. Подобный  [c.4]

В опытах по теплообмену была использована стационарная методика. Обнаружено резкое отличие интенсивности локального теплообмена шара в некоторых его зонах от среднего по поверхности, а также ухудшение теплоотдачи по сравнению с чистым воздухом (особенно при х<10). Согласно рис. 7-12 характер изменения ло-  [c.243]

В данной главе будут рассмотрены теплообменники регенеративного типа. Принятое определение в некоторой мере условно, так как подобные теплообменники сочетают особенности регенераторов непрерывного действия и смесительных аппаратов. Оно оправдано краткостью и желанием подчеркнуть, что здесь так же, как в обычных регенераторах (в теплообменном, а не в термодинамическом смысле), греющая и нагреваемая среды омывают одну и ту же поверхность нагрева неодновременно. Кроме этого, процессы протекают так же и в различных местах пространства.  [c.359]

Некоторые результаты разработки и испытания высокотемпературного теплообменника перекрестного тока приведены в [Л. 91]. Схема перекрестного движения газов и насадки в теплообменных камерах была выбрана не только потому, что интенсивность процесса при перекрестной продувке слоя может быть выще, чем при противоточной (гл. 10), но и по конструктивным причинам упрощаются подводящие и отводящие воздуховоды, облегчается их компоновка с теплообменником, заметно уменьшаются потери тепла в окружающую среду, что особенно важно при высоких температурах и пр. Схема экспериментальной установки представлена на рис. 11-7. Взаимное горизонтальное движение газов и воздуха в теплообменнике может осуществляться по схеме прямотока либо противотока. Греющие газы — продукты сгорания керосина.  [c.378]

Винипласт применяется как самостоятельный материал для изготовления труб, вентиляторов, теплообменной аппаратуры, змеевиков и т. д. Особенно широко он используется в качестве конструкционного материала для изготов,тения вентиляционных систем в помещениях с коррозионно-агрессивной атмосферой.  [c.416]

До сих пор не говорилось о том, каким образом может быть измерена скорость звука. Выше мы обращали внимание на отклонение свойств газа от идеального состояния и отмечали, что скорость Со относится к безграничному пространству. На практике, особенно в области низких температур, скорость звука измеряется в относительно небольшой колбе, которая должна иметь постоянную температуру. В настоящее время наиболее точные измерения скорости звука осуществляются при помощи акустического интерферометра с цилиндрическим резонатором. Акустические волны возбуждаются в трубе излучателем, расположенным на ее конце длина волны находится измерением перемещения отражателя между соседними резонансными максимумами. Положение стоячих волн определяется по импедансу излучателя. В этом состоит одна из трудностей акустической термометрии по сравнению с газовой. В газовой термометрии измеряемые величины, объем и давление, являются величинами статическими, хотя и существуют проблемы, связанные с сорбцией, о которой говорилось выше. В акустической термометрии измеряемые величины носят динамический характер — это акустический импеданс излучателя, например, при 5 кГц, вязкость и теплообмен со стенками трубы. Все это оказывается источником специфических трудностей при измерении, и для правильной интерпретации результатов измерения необходимо полное понимание физической сущности процессов распространения акустических волн.  [c.101]


Пористые металлы являются наиболее подходящим материалом для изготовления теплообменных элементов. Для них получено значительное количество аналитических зависимостей и экспериментальных данных по теплопроводности [ 18]. Обобщение этих данных позволит выявить как наиболее общие закономерности теплопроводности пористых металлов различных структур, так и оценить максимальную величину разброса этих данных, вызванную многочисленными невоспроизводимыми особенностями самих материалов и методик измерения.  [c.30]

Все упомянутые выше процессы сводятся к двум основным вариантам (рис. 3.12) в зависимости от соотношения между направлениями потоков теплоносителя и падающего излучения. Противоточная схема (тепловой экран с транспирацией) соответствует задачам пористого охлаждения, прямоточная - теплообмену в объемных гелиоприемниках. Отличительной особенностью последних является возможность нагрева газа в матрице до очень высокой температуры, существенно превышающей допустимую температуру прозрачной линзы, сквозь которую предварительно проходит излучение. Подаваемый холодный газ охлаждает прозрачную линзу, после этого он нагревается по мере течения сквозь пористый слой и максимальная температура достигается на выходе из него. При этом входные, менее нагретые слои матрицы частично экранируют собственное излучение от внутренних,бол ее нагретых,  [c.60]

Теплопроводность и вязкость газов представляют собой процессы переноса энергии и количества движения. Механизм явлений переноса одинаков, поэтому интенсивный теплообмен при течении газа по трубе сопровождается значительным перепадом давления вдоль потока. При конструировании теплообменников этот перепад желательно сделать возможно меньшим, особенно в тракте низкого давления.  [c.108]

Целесообразный наружный диаметр труб этих тарелок - 20 или 25 мм, так как трубы указанного диаметра имеют широкое распространение в промышленности (особенно при изготовлении теплообменного оборудования). Это упрощает их производство, так как для изготовления не требуется применения специальной технологической оснастки. Кроме того, возможно использование старого изношенного оборудования (теплообменных труб), что позволяет существенно снизить затраты на реконструкцию действующих массообменных аппаратов и выполнить ее силами эксплутационного предприятия.  [c.304]

Выясним теперь главные особенности геометрического сопла с теплообменом. Из основного соотношения (49) в этом случае имеем  [c.215]

При полете ракетного аппарата аэродинамический нагрев приобретает значительно большие масштабы. Правда, на больших высотах, где воздух имеет очень малую плотность, температура воздуха не определяет температуру обшивки летательного аппарата, так как главную роль там играет теплообмен излучением. Но ниже 150 км и особенно на высоте меньше 60 км температура летательного аппарата определяется аэродинамическим нагревом.  [c.244]

Большое влияние оказывает также гидравлическая крупность и количество грубодисперсных примесей, вводимых в систему с воздухом в градирнях и с добавочной водой. Немаловажное значение имеют и конструктивные особенности теплообменного оборудования, в часпюсти наличие в системе погруженных или других теплообменных аппаратов с очень низкими скоростями воды, в которых наблюдается более интенсивное осаждение грубодисперсных примесей, чем в трубчатых аппаратах, при прочих равных условиях.  [c.78]

Более нагретая зона, как правило, становится анодом, меиее нагретая — катодом. Такие термогальванические элементы могут возникать и при эксплуатации химической аппаратуры, особенно, теплообменной.  [c.27]

Корреляция, предложенная в [105], удовлетворительно описывает только теплообмен в псевдоожиженно.м слое доломита диаметром 1,3 мм >[106] и экспериментальные данные работы [105]. В псевдоожиженном слое крупных частиц и особенно под давлением расхождение между расчетными и экспериментальными данными неудовлетворительное.  [c.128]

Результаты расчета функции гэ(Тст. Тел, Всл) и срзЕнение их с экспериментальными данными позволяют по-новому оценить роль лучистого теплообмена при переносе энергии в псевдоожиженном слое. Как правило, считается, что радиационный теплообмен несуществен до температуры порядка 1000 °С, особенно для мелких частиц [180]. Такое заключение можно сделать исходя из сравнения потоков энергии, которые передаются от слоя к поверхности различными механизмами переноса [127, 50]. В то же время обработка экспериментальных данных (см. рис. 4.16) показывает, что при сравнительно низких температурах ( ст = 300°С, сл = = 600 °С) в слое мелких частиц (d = 0,32 мм) распределение температуры вблизи поверхности теплообмена опре-леляетгя радиационным переносом. Учитывая это, необходимо уточнить условия, при которых роль излучения в формировании распределения температуры вблизи поверхности будет существенна.  [c.183]

В книг ь последовательно рассмотрены основные виды сквозных дисперсных потоков (особенно граничные) газовзвесь, флюидная взвесь, продуваемый движущийся плотный слой, гравитационно движущийся плотный слой. Автор стремится к общности изложения и анализа этих вопросов, используя теорию подобия и рассматривая концентрацию твердой фазы как важнейший критерий. Этот критерий позволяет не только проследить за изменениями структуры потока процессами движекия и теплообмена, но и выявить границы существования основных видов проточных дисперсных систем. Вопросы рассмотрены в книге в следующем порядке элементы механики и аэродинамики, межкомпонентный теплообмен, теплообмен с дисперсными потоками. Основная часть работы посвящена вопросам теории дисперсных теплоносителей и ее приложения к расчетной практике.  [c.5]


Данные, полученные для неподвижного слоя, зачастую используются при расчете движущегося слоя, хотя теплообмен в этих случаях может быть существенно различен. Во многих случаях отмечаются весьма низкие значения коэффициентов теплообмена. Последнее связано с ранее рассмотренными особенностями аэродинамики и механики движения слоя, а также с уменьшением эффективности в плохо продуваемых участках и в зоне завершенного теплообмена (At—й)). По данным Китаева Б. И. в доменных и шахтных печах коэффициент теплообмена в 3—10 раз меньше расчетной величины [Л. 157]. В шахтных зерносушилках это расхождение достигает примерно 400 /о [Л. 252]. Данные, полученные Нортоном в полупромышленном теплообменнике типа противоточный движущийся слой при перегреве пара, подогреве воздуха и нагреве водорода, показали, что коэффициенты теплообмена с шаровой насадкой соответственно составили всего 19, 35, 84 вт1м -град [Л. 294]. В [Л. 383] на основе обработки результатов лабораторных и полупромышленных исследований получена зависимость  [c.320]

Проведенные исследования вертикально опускающегося и поперечно продуваемого слоя в основном подтвердили сказанное выше [Л. 91, 93]. Данные о работе высокотемпературного теплообменника такого типа приведены в гл. 11. Для изучения особенностей теплообмена были поставлены эксперименты, выполненные Г. В. Мальцевой. Теплообменный участок представлял собой вертикальный канал прямоугольного сечения со сменными стенками. Температура воздуха измерялась на входе в одной точке (/ = 50- 280°С), а на выходе — в 9 точках. Температура слоя мулитовой насадки диаметром 5,3 и 9,2 мм измерялась в 3 точках на ходе и в 9 на выходе. Метод отбора и калориметрирования части насадки, а также метод мгновенной остановки слоя при отключении продувки показали удовлетворительное совпадение результатов измерений температуры слоя. Небаланс в большинстве опытов не превышал 10%.  [c.325]

Радиационный теплообмен не оказывает существенного влияния на эффективную теплопроводность неподвижного слоя из-за малых температурных напоров в ячейках слоя и незначительности их размеров. В движущемся слое возникает разрыхленная пристенная зона, где роль излучения может возрасти. Конвективный теплообмен в неподвижном не-продуваемом слое практически отсутствует. В движущемся непродуваемом слое появляются токи твердых частиц и увлекаемых ими газовых прослоек. Особенно важны относительные смещения в пристенной зоне, так как здесь скорость газа падает до нуля, а скорость частиц снижается лишь на 5—50%. На кондуктивный теплообмен в движущемся слое положительно влияет периодическое нарушение сложной кинематической цепи контактов частиц, их возможное вращение и поперечные перемещения в пристенной зоне (особенно при малых О/ т и большой скорости слоя), перекатывание и скольжение частиц вдоль стенок канала, т. е. в районе граничной газовой пленки, и пр. Подобные интенсифицирующие эффекты в неподвижном слое, разумеется, невозможны. Однако следует также учесть  [c.331]

Л. 68]. Этим игнорируется дискретность сы пучей среды, особенно сильно проявляющаяся именно при поперечном обтекании тел. Уравнение энергии по существу записано в форме дифференциального уравнения Фурье — Кирхгофа для стационарного двухмерного поля. Для отличия движущегося слоя от неподвижного в [Л. 118] принимается, что коэффициент пропорциональности не равен коэффициенту эффективной теплопроводности неподвижного слоя и аналогичен коэффициенту теплопроводности при турбулентном теплообмене. Однако в критериальных уравнениях Ми сл и Ре сл выражены через эффективные характеристики неподвижного слоя. При этом коэффициенты наружного и внутреннего трения движущегося слоя использованы в качестве аргументов неправильно, так к к они зависят от условий  [c.349]

Интенсификация теплообмена особенно необходима в криогенных системах, где только так можно свести к минимуму площадь наружных поверхностей теплообменной аппаратуры. Некоторые из разработанных ранее теплообменных устройств с пористым заполнителем внутри каналов или в межгрубном пространстве созданы специально для криогенных температур. Например, в теплообменнике (см. рис. 1.10, а) во избежание снижения его эффективности за счет продольной теплопроводности пористый материал выполнен не сплошным, а в виде последо-вателыю расположенных отдельных вставок. Кроме того, с этой же целью в гелиевых проточных криостатах предложено использовать сетчатые металлические вставки с ярко выраженной анизотропией теплопроводности, у которых продольная теплопроводность значительно меньше поперечной.  [c.17]

Теплообменные устройства с испытывающим фазовое превращение теплоносителем внутри пористых элементов обладают рядом качественно новых свойств по сравнению с такими устройствами, где теплоноситель - однофазный. Одной из причин этого является особенно высокая интенсивность теплообмена при фазовом превращении теплоносителя внутри проницаемой матрищ>1. Структура потока и механизм теплообмена в этом процессе имеют ряд особенностей и качественно отличаются от аналогичных характеристик в каналах обычных размеров. Причиной этого является то, что размер пор значительно меньше капиллярной постоянной жидкости ajg p -р )].  [c.77]

Методы конечных элементов и конечных разностей имеют ряд существенных отличий. Прежде всего методы различны в том, что в МКР аппроксимируются производные искомых функций, а в МКЭ — само решение, т. е. зависимость искомых функций от пространственных координат и времени. Методы сильно отличаются и в способе построения сеток. В МКР строятся, как правило, регулярные сетки, особенности геометрии области учитываются только в околограничных узлах. В связи с этим МКР чаще применяется для анализа задач с прямолинейными границами областей определения функций. К числу традиционных задач, решаемых на основе МКР, относятся исследования течений жидкостей и газов в трубах, каналах с учетом теплообменных процессов и ряд других. В МКЭ разбиение на элементы производится с учетом геометрических особенностей области, процесс разбиения начинается от границы с целью наилучшей аппроксимации ее геометрии. Затем разбивают на элементы внутренние области, причем алгоритм разбие-  [c.49]

При способах сварки плавлением, особенно с использованием дуги, происходит интенсивное перемешивание жидкого металла как вследствие его движения из передней части ванны в заднюю, так и под влиянием других воздействий источника теплоты на жидкий металл. Происходит интенсивный теплообмен между отдельными порциями различно нагретого жидкого металла, а также вследствие теплоотвода в твердый металл. По этой причине энергетическое состояние ванны целесообразно характеризовать не только возможными максимальными и минимальными температурами, но и средней температурой жидкого металла. Она зависит от режима сварки (тока, напряжения, скорости сварки), характера подачи присадочного металла, устойчивости дуги и положения ее активного пятна. Например, средняя температура ванны при аргонно-дуговой сварке алюминиевого сплава АМгб может изменяться от 920 до 1050 К при возрастании тока от 300 до 450 А при 14 В и от 1070 до 1200 К при и =8 В, в то время как температура плавления сплава АМгб составляет около 890 К.  [c.231]

В литературе имеются довольно обширные табличные данные по излучатель.ной способности различных материалов. Однако из-за существующей неопределенности в классификации состояния поверхности и из-за методических ошибок табличные значения радиационных характеристик не всегда с высокой точностью могут описать свойства данной поверхности, для которой должен быть выполнен расчет. Особенно большие расхождения встречаются в оценках е металлов. Поэтому для выполнения особо точных расчетов теплообмена излучением необходимо либо специально определять радиационные характеристики кон1фетных поверхностей, участвующих в теплообмене, что крайне трудоемко, либо  [c.27]


Теория теплообмена — это учение о процессах переноса теплоты в пространстЕ1е. Теплообмен является основой многих явлений, наблюдаемых в природе и технике. Целый ряд важных вопросов конструирования и создания летательных аппаратов и особенно их силовых установок решается на основе теории теплообмена.  [c.239]

Различают четыре вида условий однозначности геометрические, физические, граничные и временные. Геометрические условия отражают форму и размеры тел или их поверхностей, участвующих в теплообмене. Физические условия характеризуют физические свойства участвующих в теплообмене тел. Граничные условия определяют особенности проте кани5т явлений на границах изучаемой системы. Временные условия определяют начальное состояние системы и изменение граничных условий во времени. Временные условия задаются только при нестационарном режиме теплообмена.  [c.265]


Смотреть страницы где упоминается термин Особенности теплообмена в ЖРД : [c.195]    [c.238]    [c.243]    [c.321]    [c.352]    [c.361]    [c.367]    [c.478]    [c.65]    [c.109]   
Смотреть главы в:

Жидкостные ракетные двигатели  -> Особенности теплообмена в ЖРД



ПОИСК



Гидродинамические особенности конвективного теплообмена

Дифференциальные уравнения и особенности исследования процессов теплообмена и гидродинамики в колеблющихся потоках

Конденсация четырехокиси азота в вертикальной трубе Некоторые особенности гидродинамики и теплообмена при ламинарной конденсации

Некоторые особенности теплообмена в каналах в условиях колебаний несжимаемой жидкости с постоянными физическими свойствами

Некоторые особенности теплообмена при обтекании тела потоком жидкости с числом

Некоторые особенности течения двухфазных сред с внешним теплообменом

Общая характеристика особенностей теплообмена в плазмотронах

Ооновные особенности лучиотого теплообмена в камере ЖЭД

Особенности движения и теплообмена в трубах

Особенности излучения газов и паров. Сложный теплообмен

Особенности конвективного теплообмена в условиях камеры жидкостных ракетных двигателей

Особенности конвективного теплообмена в.каналах

Особенности конструкционных решений теплообменного оборудования АЭС

Особенности коррозии и защиты теплообменного оборудования химической промышленности

Особенности кризиса теплообмена в стержневых сборках

Особенности кризиса теплообмена при кипении в кольцевых каналах и в продольно омываемых пучках труб

Особенности механизма процесса теплообмена при кипении растворов и смесей

Особенности нагрева загрузки в электрических печах с преобладанием конвективного теплообмена

Особенности процесса теплообмена при пузырьковом кипении Дифференциальные уравнения. Обобщенные переменные

Особенности процессов нестационарного теплообмена в пучках витых труб

Особенности теплообмена в неньютоновских потоках

Особенности теплообмена в охлаждаемой пористой полупрозрачной стенке

Особенности теплообмена в топках паровых котлов

Особенности теплообмена в ядерных реакторах

Особенности теплообмена жидких металлов

Особенности теплообмена при гиперзвуковых скоростях

Особенности теплообмена при естественной конвекции

Особенности теплообмена при кипении морской воды в тонких пленках

Особенности теплообмена при кондиционировании воздуха

Особенности теплообмена при локальном кипении жидкости внутри машины

Особенности теплообмена при низких температурах

Особенности теплообмена ядра калориметра с оболочкой

Особенности течения и теплообмена в разреженных газах

Связь характеристик горения с параметрами рабочего процесса Особенности лучистого теплообмена в цилиндре двигателя

ТЕПЛООБМЕН ПРИ КОНДЕНСАЦИИ СМЕСИ ПАРОВ Особенности процесса

Теплообменное оборудование низкотемпературных установок Особенности и классификация теплообменного оборудования низкотемпературных установок

Физические особенности процесса теплоКонвективный теплообмен отдачи

Ю б и ц, Теплообмен инфракрасным излучением и его особенности



© 2025 Mash-xxl.info Реклама на сайте