Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы сведения к системам обыкновенных дифференциальных уравнений

МЕТОДЫ СВЕДЕНИЯ К СИСТЕМАМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ  [c.248]

Сведение системы уравнений в частных производных к системе обыкновенных дифференциальных уравнений упрощает процедуру численного решения задачи и позволяет использовать в методе характеристик численные методы решения обыкновенных дифференциальных уравнений. При численном решении уравнений направления и совместности обычно используют итерационный метод, в этом случае первая итерация соответствует методу Эйлера, а вторая и последующие — методу Эйлера с пересчетом, что обеспечивает второй порядок точности численного решения.  [c.112]


Столь же перспективными для решения нелинейных задач динамики оказываются и вариационные методы сведения уравнений в частных производных к системам обыкновенных дифференциальных уравнений.  [c.351]

Очень широкое распространение в механике и физике получили так называемые автомодельные решения, характеризующиеся существованием некоторых комбинаций независимых переменных (автомодельных переменных), которые соответствуют опре деленным свойствам подобия или инвариантности рассматриваемых классов физи ческих решений. Методы анализа размерностей физических величин, определяющих задачу, позволили [8] осуществить понижение размерности для весьма широкого круга физических и механических задач. Особенно эффективным в конструктивном плане оказалось в ряде ситуаций сведение сложной исходной задачи к системе обыкновенных дифференциальных уравнений, в которой в качестве независимой переменной высту пает автомодельная переменная. Это позволило получать классы точных решений в замкнутой форме, например, знаменитое решение газодинамической задачи о точечном взрыве [8], и осуществить качественный и детальный количественный анализ важных задач в неинтегрируемых случаях.  [c.17]

В обычно применяемых методах определение движения свободной точки в пространстве под влиянием ускоряющих сил состоит в интегрировании трех обыкновенных дифференциальных уравнений второго порядка, а определение движения системы свободных точек, взаимно притягивающихся или отталкивающихся, — в интегрировании системы подобных уравнений, число которых втрое больше числа притягивающихся или отталкивающихся точек, если только мы предварительно не уменьшим это последнее число на единицу, рассматривая только относительные движения. Таким образом, в солнечной системе, если мы рассматриваем только взаимные притяжения Солнца и десяти известных планет [ ], определение движений последних относительно первого при помощи обычных методов сводится к интегрированию системы тридцати обыкновенных дифференциальных уравнений второго порядка, связывающих координаты и время, или же, при помощи преобразования Лагранжа, — к интегрированию системы шестидесяти обыкновенных дифференциальных уравнений первого порядка, связывающих время и эллиптические элементы. При помощи этих интегрирований тридцать переменных координат или шестьдесят переменных элементов могут быть найдены, как функции времени. В методе, предложенном в данной работе, задача сводится к отысканию и дифференцированию единственной функции, которая удовлетворяет двум уравнениям в частных производных первого порядка и второй степени подобным же образом всякая другая динамическая задача, относящаяся к движениям (как бы многочисленны они не были) любой системы притягивающихся или отталкивающихся точек (даже если мы предполагаем, что эти точки ограничены какими-либо условиями связи, совместными с законом живой силы), сводится к изучению одной центральной функции, форма которой определяет и характеризует свойства движущейся системы и определяется двумя дифференциальными уравнениями в частных производных первого порядка в сочетании с некоторыми простыми соображениями. Таким образом, по крайней мере интегрирование многих уравнений одного класса заменяется интегрированием двух уравнений другого класса, и даже если считать, что этим не достигается никакого практического облегчения, тем не менее можно получить некое интеллектуальное наслаждение от сведения, пожалуй, самого сложного из всех исследований.  [c.176]


Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]

В математической физике методы приближенного решения дифференциальных и интегральных уравнений, основанные на сведении задач к решению системы алгебраических уравнений, принято называть прямыми методами. Прямые методы широко применяют непосредственно для построения приближенных решений задач, описываемых обыкновенными дифференциальными уравнениями и уравнениями в частных производных, а также вариационных задач, к которым сводятся соответствующие задачи математической физики.  [c.115]

Методы сведения к обыкновенным дифференциальным уравнениям. Ввиду сложности исходных уравнений точного решения в замкнутом виде получить не удается. Возможны лишь различные приближенные подходы. Наиболее эффективный подход основан на применении метода Галеркина [9] и его модификаций. В результате задача сводится к исследованию системы обыкновенных нелинейных дифференциальных уравнений. Полученная бесконечная система усекается, и дальнейшее исследование проводят для усеченной систе.мы.  [c.503]

Таким образом, метод интегральных соотношений как разновидность проекционных методов решения уравнений в частных производных является обобщением метода прямых и инженерного метода сосредоточенных параметров. Решение разбивается на два этапа. Первый этап состоит в сведении точной системы уравнений в частных производных к аппроксимирующей системе обыкновенных дифференциальных уравнений. На втором этапе проводится численное решение этой аппроксимирующей системы каким-либо из стандартных методов (обычно методом Рунге—Кутта). При этом приведение системы обыкно1венных дифференциальных уравнений типа (7-46) к канонической форме может быть легко осуществлено непосредственно программой.  [c.96]

В основу метода ортогональной прогонки, как мы уже внцели, положена нцея сведения краевой задачи к последовав тельному решению задач Коши для нормальной системы обыкновенных дифференциальных уравнений  [c.120]

Теорема Якоби сводит решение системы обыкновенных дифференциальных уравнений (5) к отысканию полного инте1рала уравнения в частных производных (4). Может показаться удивительным, что такое сведение более простого к более сложному доставляет эффективный метод решения конкретных задач. Между тем оказывается, что это — самый сильный из сущ ествую111 11х методов точного интегрирования, и многие задачи, решенные Якоби, вообще не поддаются решению другими методами.  [c.229]


Анализ корректной разрешимости контактных задач при использовании различных теорий оболочек проведен в [13, 84, 214]. Применительно к осесимметричной контактной задаче для круговых цилиндрических оболочек математические аспекты использования моделей Кирхгофа — Лява, Тимошенко и учета трансверсального обжатия, выяснение условий кор->ектности задач, способы-их регуляризации рассмотрены в 130]. Для строгого изучения этих вопросов применены теория обобш,енных функций и методы решения некорректных задач. Приведены сведения из теории краевых задач для обыкновенных дифференциальных уравнений с постоянными коэ1 )фици-ентами и основные понятия теории обобш,енных функций. С помош,ью фундаментальной системы решений дифференциального оператора построены функции Грина и функции влияния для оболочек Кирхгофа — Лява и Тимошенко. Даны постановки задач о контакте оболочек между собой и с осесимметричными жесткими штампами. Методом сопряжения построены обобщенные решения, поскольку классическое существует только для моделей, учитывающих трансверсальное обжатие. Найдены обобщенные решения интегральных уравнений Фредгольма первого рода, рассмотрены методы их аппроксимации классическими (методы регуляризации).  [c.11]

Для расчета оболочек вращения, а также оболочек с прямоугольным параметрическим планом широко используется аппроксимация системы дифференциальных уравнений в частных производных системой в обыкновенных производных и метод Ньютона. Линеаризованная краевая задача решается сведением ее к ряду задач Коши с дискретной ортогонализа-цней по Годунову [90, 91, 134, 186, 187]. Такой подход позволяет построить эффективные алгоритмы числеииого изучения прочности, устойчивости, собственных и вынужденных колебаний оболочек с учетом геометрической и физической нелинейностей задачи. Развитая в последующих главах методика  [c.24]


Смотреть страницы где упоминается термин Методы сведения к системам обыкновенных дифференциальных уравнений : [c.243]    [c.252]   
Смотреть главы в:

Вибрации в технике Справочник Том 1  -> Методы сведения к системам обыкновенных дифференциальных уравнений



ПОИСК



Дифференциальные системы

Дифференциальные уравнения обыкновенные

Луч обыкновенный

Метод дифференциальный

Метод систем

Методы Уравнения дифференциальные

Обыкновенные дифференциальные

Система дифференциальных уравнений

Уравнение метода сил



© 2025 Mash-xxl.info Реклама на сайте