Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет подшипников скольжения при жидкостной смазке

Подшипники скольжения должны работать со смазочным материалом. Наилучшие условия для работы подшипников создаются при жидкостной смазке, когда осуществляется полное разделение трущихся поверхностей жидким смазочным материалом. При граничной смазке трение и износ определяются свойствами поверхностей и свойствами смазочного материала, отличными от объемных. При полужидкостной смазке частично осуществляется жидкостная смазка. Основной расчет подшипников скольжения — это расчет минимальной толщины масляного слоя, который при установившемся режиме работы должен обеспечивать жидкостную смазку. Тепловые расчеты проводят для определения рабочих температур подшипника. В ряде случаев проверяют подшипник на виброустойчивость путем решения дифференциальных уравнений гидродинамики [3]. Расчеты по критерию износостойкости из-за сложности пока не нашли широкого применения [17].  [c.465]


К расчетам на износостойкость можно также отнести расчет подшипников скольжения при гидродинамическом режиме трения и смазки — расчет, который должен обеспечить работу подшипника в условиях жидкостного трения. При этом виде трения рабочие поверхности деталей разделены слоем смазки и, таким об-  [c.20]

Если при расчете подшипников скольжения с жидкостным трением по формуле (17.7) окажется, что > [г ], то изменяют геометрические пар-аметры подшипника, выбирают для смазки масло с большей динамической вязкостью, назначают для рабочих поверхностей цапфы и вкладыша подшипника меньшие шероховатости. Можно одновременно использовать все указанные способы улучшения температурного режима.  [c.301]

Радиальные подшипники. Расчет подшипников скольжения, работающих в режиме жидкостного трения, сводится к обеспечению условий, при которых цапфа будет отделена от вкладыша слоем смазки (рис. 13.6).  [c.316]

Расчет подшипников скольжения, работающих при жидкостной смазке, производится на основе гидродинамической теории смазки, которая основана на решении дифференциальных уравнений гидродинамики вязкой жидкости. Эта теория доказывает, что гидродинамическое давление может развиваться только в клиновом зазоре (см. эпюру на рис. 23.6). Толщина Н масляного слоя в самом узком месте (см. рис. 23.7) зависит от режима работы подшипника. Чем больше вязкость смазочного материала и угловая скорость цапфы, тем больше к. С увеличением нагрузки к уменьшается. При установившемся режиме работы толщина к должна быть больше суммы микронеровностей цапфы 61 и вкладыша 62  [c.317]

Износ детали или сопряженной пары нередко характеризуется несколькими показателями. Важно выявить наиболее существенный из них по воздействию на работоспособность. На работу подшипника скольжения влияет не только увеличение зазора. Эллиптичность и другие искажения формы деталей в поперечных сечениях изменяют соотношение между кривизной соприкасающихся поверхностей, поэтому возможности реализации трения при жидкостной смазке становятся иными. Если с помощью гидродинамической теории смазки не представляет особого труда решить задачу о допустимом предельном зазоре в подшипнике при геометрически правильных поверхностях деталей, то расчет допустимых искажений формы представляет весьма сложную задачу. Надо прибегать к стендовым испытаниям, сочетая их с теоретической разработкой той или иной степени приближения.  [c.379]


Опора или направляющая, трение вала в которой происходит при скольжении и определяющая положение вала по отношению к другой части механизма, называется подшипником скольжения. Критерии расчетов подшипников скольжения определяются характером внешнего трения в подшипнике в зависимости от наличия смазочного материала. Различают трение без смазывания, граничное и жидкостное трение. При трении без смазывания на трущихся поверхностях отсутствует смазочный материал при граничном — имеется тонкий (порядка 10 4 мм) слой смазочного материала с особыми свойствами. Действие такого смазочного материала называется граничной смазкой. Под жидкостным трением понимается явление сопротивления относительному перемещению, возникающее между двумя телами, разделенными смазочным материалом, в котором проявляются его объемные свойства. Соответствующее действие смазочного материала при этом называется жидкостной смазкой.  [c.307]

Расчет подшипников скольжения на основе гидродинамической теории смазки заключается в определении минимально допустимого зазора между валом и подшипником, при котором сохраняется надежное жидкостное трение. Расчет обычно производится на режиме максимальной мощности. Минимальный слой смазки в подшипнике по гидродинамической теории смазки  [c.370]

Режим жидкостного трения удается получить при правильном проектировании и тщательном изготовлении подшипника. Расчет подшипников скольжения, работающих при жидкостном трении, производится на основе гидродинамической теории смазки , которая основана на решении дифференциальных уравнений гидродинамики вязкой жидкости. Эта теория доказывает, что гидродинамическое давление может развиваться только в клиновом  [c.320]

Режим жидкостной смазки удается получить при правильном проектировании и тщательном изготовлении подшипника. Расчет подшипников скольжения, работающих при жидкостной смазке, производится на основе гидродинамической теории смазки, которая основана на решении дифференциальных уравнений гидродинамики вязкой жидкости. Эта теория доказывает, что гидродинамическое давление может развиваться только в клиновом зазоре (см. эпюру на рис. 18.6). Толщина /г масляного слоя в самом узком месте (см. рис.  [c.210]

Расчет и выбор посадок с зазором в подшипниках скольжения. Наиболее распространенным типом ответственных подвижных соединений яв-ляются.подшипники скольжения, работающие со смазкой. Для обеспечения наибольшей долговечности необходимо, чтобы при установившемся режиме подшипники работали с минимальным износом. Это достигается при жидкостном трении, когда поверхности цапфы и вкладыша подшипника полностью разделены слоем смазки и трение между металлическими поверхностями заменяется внутренним трением в смазочной жидкости. Наибольшее распространение имеют гидродинамические подшипники. Жидкостное трение в них создается тогда, когда при определенных конструктивных и эксплуатационных факторах смазочное масло увлекается вращающейся цапфой в постепенно суживающийся (клиновой) зазор между  [c.162]

Хотя допустимое значение параметра pv подбирают при этом в зависимости от скорости скольжения, способа теплоотвода, характера действия нагрузки и других условий, однако использование этого произведения как показателя работоспособности встречает возражения со стороны специалистов в области теории расчета подшипников жидкостной смазки. Основанием для этого служит то, что эта по сути примитивная теория расчета принимает коэффициент трения постоянным и не учитывает роли относительного диаметрального зазора в подшипнике, отношения длины шипа к его диаметру и влияние вязкости смазочного материала. Тем не менее, если подшипник или другая пара работает при граничной смазке, то расчет по pv является оправданным, поскольку этот параметр косвенно характеризует температуру поверхности трения, которая в явном виде не входит в число заданных при расчете величин. Дополнительно следует лимитировать допустимое давление [р]. Инженер-  [c.327]


Любое изменение режима трения на участке 2—3 приводит к изменению коэффициента трения и, как следствие, температуры подшипникового узла. Если при увеличении Я температура увеличилась, вязкость масла падает, за счет чего уменьшается и Я. Если Я уменьшилась, уменьшается коэффициент трения и тепловыделение в подшипнике, что приведет к увеличению вязкости, за счет которой возрастет до прежнего значения и характеристика Я. Для того чтобы процесс восстановления равновесия при жидкостном трении в подшипнике происходил во всем диапазоне возможных колебаний режима, необходимо рассчитать его с достаточным коэффициентом запаса. Характеристика Я может служить только для ориентировочной оценки работы подшипника при жидкостном трении. Достаточно точный расчет при этом режиме основан на гидродинамической теории смазки, устанавливающей взаимосвязь ряда параметров размеров подшипника, зазора в нем, свойств смазочного материала, нагрузки, скорости скольжения, а также способов теплоотвода и др.  [c.308]

Подшипники скольжения, предназначенные для восприятия радиальных и осевых (подпятники) нагрузок и работаюш,ие в режиме смешанного или граничного трения, рассчитывают по условной методике на износостойкость и нагрев (табл. 3.44). При жидкостном трении расчет ведут на основе гидродинамической теории смазки, здесь этот расчет не рассматривается.  [c.375]

Правильное определение основных рабочих характеристик подшипников скольжения (грузоподъемности, потерь на трение и необходимого количества смазки с возможно более полным и точным соответствием физическому процессу течения смазки) во многом обеспечивает надежность и долговечность проектируемого опорного узла при его эксплуатации в режиме жидкостного гидродинамического трения. Область применения предлагаемой методики расчета представлена в табл. I. Также приведены материалы подшипников, средние значения удельных нагрузок Рт на подшипник, окружных скоростей и и геометрические характеристики относи-I , Д  [c.3]

Расчет подшипников скольжения. При работе мапшны трение между цапфой вала и вкладышем подшипника при жидком смазочном материале может происходить в условиях жидкостной, полужидкостной и граничной смазки.  [c.224]

Общие соображения Существует два осовных метода расчета подшипников скольжения а) расчет, основанный на гидродинамической теории трения и смазки б) условный расчет, применяемый к подшипникам, работающим при режиме граничного трения, когда трущиеся поверхности не разделены слоем смазки, а на рабочей поверхности вкладыша имеется лишь тонкая адсорбированная масляная пленка. Условный расчет иногда используют в качестве предварительного, ориентировочного расчета для подшипников, рассчитываемых затем по гидродинамической теории. Его применяют также для обеспечения износостойкости подшипников скольжения при переходных режимах (при пуске в ход и остановке машины), когда трущиеся поверхности не разделены масляным слоем достаточной толщины. Расчет подшипников, работающих в режиме жидкостного трения, рассмотрен в следующем параграфе, здесь остановимся на условном расчете.  [c.388]

Почему вкладыш подшипника изготовляют из менее износостойкого материала, чем материал цапфы 5. Как производится условный расчет подшипников скольжения 6. При каких значениях ф = //й допустимо устанавливать подшипники скольжения с неподвижными вкладышами 7. В чем состоят особенности работы подшипников скольжения при режиме жидкостного трения 8. Дайте сравнительную характеристику подшипников скольжения и качения. 9. Как классифицируют подшипники качения 10. Могут ли радиальные шарикоподшипники воспринимать осевую нагрузку И. Могут ли упорные подшипники воспринимать радиальную нагрузку 12. Для чего применяют радиальные роликовые подшипники с безбор-товыми кольцами 13. От чего зависит выбор типа подшипников качения 14. Как по условному обозначению подшипника качения определить его тип, серию и диаметр 15. В каких случаях целесообразно применение самоустанавливающихся подшипников качения 16. Укажите основные способы крепления внутренних и наружных колец подшипников качения. 17. Каково назначение смазки подшипников качения и как она осуществляется 18. Укажите основные типы уплотнений подшипниковых узлов. 19. В каких случаях применяют мазеудерживающие кольца и в каких—маслосбрасывающие шайбы  [c.229]

При движении плоской пластины А (рис. 13.6, а) относительно плоской поверхности Б в смазочном слое, разделяющем эти поверхности, возникают гидродинамические силы, зависящие от относительной скорости, вязкости смазочного материала и толщины его слоя. Для ламинарного потока вязкой жидкости эта зависимость описывается обобщенным уравнением Рейнольдса. Применительно к расчету подшипников скольжения в условиях жидкостной смазки вводят следующие упрощения движение пластины — установившееся с постоянной скоростью в направлении оси Ох, т. е. принимают U = onst, К=0 и W = 0. Течение смазки в направлении оси Oz от-  [c.383]

К середине XX века было установлено, что во многих смазанных тяжело нагруженных или неприработанных узлах трения при контакте неконформных или легкодеформируемых тел (в зубчатых или цепных передачах, в подшипниках качения, в полимерных или тяжело нагруженных подшипниках скольжения, при обработке металлов давлением) при определенных условиях наблюдается жидкостная смазка, хотя толщина смазочного слоя, рассчитанная по уравнению Рейнольдса, не превышала суммарной высоты неровностей контактирующих тел. Это препятствовало корректному расчету таких узлов трения. Эластогидродинамическая (ЭГД) теория смазки позволила распространить классическую гидродинамическую теорию смазки на условия контакта, при которых реализуются высокие давления, вызывающие упругие деформации контактирующих тел и увеличивающие вязкость смазочного материала в пленке жидкости, разделяющей эти тела. ЭГД-теория смазки учитывает эти явления и адекватно описывает процесс смазки тяжело нагруженных узлов трения либо узлов трения с легко деформируемыми деталями [30,  [c.210]


Расчет подвижных посадок относится к посадкам вращения вала в подшипниках скольжения при условии, что ось вала ст ого пара 1-лелы. а оси п дш-тника и - то вкладыши отверстия имеют строго цилиндрическую форму без смазочных канавок на нагруженной стороне подшипника При этих условиях правильный расчет зазоров на основе гидродинамической теории смазки может обеспечить жидкостное трение между валом и вкладышем в период стабильных эксплуа-  [c.71]

Задача машиностроения — выпускать машины, не требующие капитального ремонта за весь период эксплуатации. Текущие ремонты должны быть простыми и нетрудоемкими. Одно из направлений развития машиностроения — разработка конструкций, в которых осуществляется так называемое жидкостное трение. При жидкостном трении поверхности деталей разделены тонким масляным слоем. Они непосредственно не соприкасаются, а следовательно, и не изнашиваются, коэффициент трения становится очень малым ( 0,005). Для образования режима жидкостного трения, например в подшипниках скольжения, необходимо соответствующее сочетание нагрузки, частоты вращения и вязкости масла (см. 16.4). Основоположником жидкостного трения является наш отечественный ученый Н. П. Петров, который опубликовал свои исследования в 1883 г. В дальнейшем эта теория получила развитие в трудах многих отечественных и зарубежных ученых. Теперь мы можем выполнять расчеты режима жидкостного трения. Однако жидкостное трение можно обеспечить далеко не во всех узлах трения. Кроме соблюдения определенных значений упомянутых выше факторов оно требует непрерывной подачи чистого масла, свободного от абразивных частиц. Обычно это достигается при хщркуляционной системе смазки с насосами и фильтрами. Там, где жидкостное трение обеспечить не удается, используют другое направление — применение для узлов трения таких материалов и таких систем смазки, при которых они будут износостойкими.  [c.7]

С увеличением скорости скольжения коэффициент трения быстро уменьшается (участок 1—2), при этом трение переходит в полужид-костное, характеризующееся тем, что поверхности скольжения еще не полностью разде /ены слоем смазки, так что выступы неровностей соприкасаются. В точке 2 начинается участок 2—3 жидкостного трения толщина смазочного слоя возрастает от минимальной, достаточной лишь для покрытия всех выступов, до избыточной, перекрывающей все неровности с запасом. При жидкостном трении рабочие поверхности полностью отделены друг от друга, и сопротивление относительному движению их обусловлено не внешним трением контактирующих элементов, а внутренними силами вязкой жидкости. Теоретически наилучшие условия работы подшипника обеспечиваются в точке 2 — здесь сопротивление движению и соответствующее тепловьще-ление наименьшие, но нет запаса толщины слоя поэтому практически оптимальные условия будут в зоне справа от точки 2. Расчет подшипника, работающего в режиме жидкостного трения, выполняется на основе гидродинамической теории смазки. Однако такой режим может быть осуществлен лишь при достаточно большом значении характеристики режима к > Якр, где — значение характеристики режима в точке 2. Для опор тихоходных валов это условие в большинстве случаев не выполняется, а для быстроходных оно нарушается в периоды пуска и останова, когда частота вращения вала мала.  [c.244]


Смотреть страницы где упоминается термин Расчет подшипников скольжения при жидкостной смазке : [c.400]    [c.561]    [c.335]    [c.473]    [c.515]   
Смотреть главы в:

Детали машин  -> Расчет подшипников скольжения при жидкостной смазке



ПОИСК



660 — Расчет скольжения

Жидкостная смазка

Подшипники Расчет

Подшипники Смазка

Подшипники расчета 264 — Расчет

Подшипники скольжения

Подшипники скольжения смазка

Расчет жидкостный

Расчет подшипников жидкостной смазки

Расчет подшипников скольжения

Смазка и расчет подшипников скольжения

Смазка подшипников скольжени

Смазка скольжения



© 2025 Mash-xxl.info Реклама на сайте