Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплообменники типа металл — металл

До сих пор бытует заблуждение, что вследствие высокой теплопроводности жидких металлов в теплообменниках типа металл—металл не могут возникать большие перекосы температурных полей. Такое представление возникло из-за путаницы понятий о процессах передачи тепла теплопроводностью (в твердых телах) и посредством конвекции теплоносителя. Как правило, условия работы теплообменников с жидкометаллическими теплоносителями соответствуют низким значениям Ре вследствие малости Рг. При этом значения Ре оказываются того же порядка, что и в теплообменниках с обычными (газом, водой) теплоносителями. При таких условиях неравномерности распределения температуры в жидкометаллических теплообменниках могут оказаться даже большими, чем в обычных водяных или газовых теплообменниках. Поэтому в жидкометаллических теплообменниках следует обращать большое внимание на профилирование расходов теплоносителей.  [c.133]


Теплообменники типа металл—вода  [c.96]

Теплообменники типа металл—металл  [c.98]

Теплообменники типа металл — воздух (газ)  [c.101]

Куном проведено сопоставление затрат материалов на создание воздухонагревателя типа газовзвесь и обычного регенератора для мартеновских печей на 3 и 90 г, а также каупера домны. Показано, что во всех случаях затраты шамота, кирпича, бетона, металла более чем на порядок уменьшаются при переходе к теплообменникам типа газовзвесь . При этом отмечается небольшая тепловая инерция аппарата и возможность быстрого его разогрева. Следует отметить, что по опытным данным Л. Купа коэффициент аэродинамического торможения насадки k в среднем составлял 0,7.  [c.373]

В процессе подготовки. производства оборудования для первого реактора на быстрых нейтронах мощностью 600 МВт типа БН-600 коллективом завода решен большой комплекс технических вопросов, таких как автоматическая аргонодуговая приварка, объемная гибка труб теплообменников, безокислительная термическая обработка металла и другие технологические операции (рис. 10.4).  [c.242]

Изучение теплоотдачи к жидким металлам при течении в кольцевых зазорах проводилось как на легких, так и на тяжелых металлах. Исследованию теплоотдачи к эвтектическому сплаву Na + K посвящены две работы [18, 19]. Опыты в обоих случаях проводились на теплообменниках типа восьмерка .  [c.135]

Реальное осуществление высокоэффективных теплообменников типа газовзвесь , характеризующихся значительной интенсивностью контактного теплообмена, отсутствием затрат металла на поверхность нагрева, возможностью глубокого охлаждения газов или высокого нагрева воздуха [Л. 1-ь4] встречает ряд трудностей.  [c.681]

Помимо обнаружения внутренних дефектов радиографический контроль может быть использован для толщинометрии конструкций. Для этого проводят измерения плотности снимка в поперечном сечении контролируемого изделия. Границы, определяющие толщину стенки, выделяются на снимке резким изменением плотности. В ряде случаев радиационная толщинометрия является единственным методом определения остаточной толщины конструкции без ее повреждения. Например неразборные теплообменники типа труба в трубе , трубы в изоляции, трубы, покрытые плакирующим металлом (биметаллические), и т.д.  [c.97]

Парогенератор АЭС — теплообменный аппарат рекуперативного типа — предназначен для производства пара. Нагрев теплоносителя, поступающего в парогенератор для передачи теплоты для получения пара, осуществляется в реакторе (при двухконтурной схеме АЭС) или в промежуточном теплообменнике (трехконтурная схема АЭС) от теплоносителя (жидкая или газообразная среда, используемая для осуществления процесса теплообмена) первого контура. В качестве теплоносителя используется вода, жидкие металлы или газ соответственно различают парогенераторы с водяным, жидкометаллическим или газовым теплоносителями.  [c.246]


Для охлаждения газа или воды в двухконтурных схемах используют теплообменные аппараты типа, ,труба в трубе" и кожухотрубчатые. Аппараты типа, ,труба в трубе" выпускают на рабочее давление 6,4 МПа и выше и температуру охлаждаемой среды до 473 К. Аппараты просты по конструкции. Их можно эксплуатировать с высокими скоростями движения теплоносителей, но они имеют большие затраты металла на единицу поверхности теплообмена, небольшие поверхности теплопередачи, занимают значительную площадь при установке на КС. Длина труб диаметрами 25—133 мм изменяется в пределах 3—12 м. Выпускают одно- и многопоточные теплообменники с гладкими или ребристыми поверхностями теплообмена. Кожухотрубчатые теплообменные аппараты для охлаждения воды или газа выпускают в основном двух типов без компенсаторов и с компенсаторами на плавающей головке. Диаметры кожухов от 385 до 1400 мм. Рабочее давление до 6,4 МПа. Единичные поверхности аппаратов от 221 до 1090 м . Аппараты с плавающей головкой применяют в том случае, когда имеются значительные температурные перепады между теплоносителями. В условиях КС температурные перепады между газом и водой относительно невелики, и можно использовать аппараты без компенсаторов, так как они значительно проще и дешевле. В охлаждении газа используют и оросительные аппараты. Вода, охлажденная в градирне, поступает на поверхность аппарата, выполненного в виде пучка труб, внутри которых движется газ.  [c.131]

В качестве утилизаторов тепла обычно применяют различные поверхностные теплообменники регенеративного и рекуперативного типов. На их изготовление и установку затрачивают значительные количества металла. Они, как правило, являются громоздкими и дорогими. Тем не менее, в поверхностных утилизаторах тепла обеспечить глубокое охлаждение дымовых газов (ниже 120—140° С) весьма трудно, а также экономически невыгодно для дальнейшего снижения температуры уходящих газов /ух (т. е. для передач большего количества тепла Q при меньшей средней разности температур А/ между теплоносителями) необходимо резко увеличить поверхность нагрева Н.  [c.4]

Теплофизические свойства металла разделяющей стенки А.М, См, Ym определяются интерполяцией табличных данных для металла заданного типа при температуре i p-Для конвективных теплообменников коэффициент теплоотдачи от газа к стенке oi определяется по известному из теплового расчета значению коэффициента теплоотдачи k и вычисленному по (8-27) значению коэффициента теплоотдачи аа от стенки к среде  [c.137]

Применение деаэраторов перегретой воды связано с энергетическими потерями, ибо перегрев воды требует расходования пара повышенного давления, обладающего более высоким тепловым потенциалом, чем при давлении в деаэраторе. Кроме того, нагревание перед деаэратором воды, насыщенной кислородом, до температуры порядка 120° С (в закрытой системе — теплообменнике) ставит в исключительно тяжелые условия в отношении коррозии металла подогреватель и трубопровод, соединяющий его с деаэраторной колонкой. Далее, деаэраторы этого типа характеризуются трудностью регулирования температуры, обеспечения равномерного разбрызгивания перегретой воды при переменных нагрузках и равномерного отвода газов. Наконец, почти весь пар выделяется из воды в верхней части колонки деаэратора поэтому вода, стекающая в нижней части колонки, не омывается встречным потоком пара (не вентилируется ), что сильно ухудшает условия десорбции газов из воды. Поэтому деаэраторы перегретой воды теперь почти не применяются на советских электростанциях, а ранее установленные переделаны для работы по смешивающему принципу.  [c.377]

В практике работы отдельных котельных н электростанций наблюдались случаи, когда при ненадежной и неустойчивой работе питательных насосов старой конструкции (например, насосов типа Комсомолец , не рассчитанных на температуру 102—105° С) в деаэраторе атмосферного типа поддерживалась температура воды ниже нормальной. Коррозия металла труб котлоагрегатов предотвращалась установкой на пути воды из деаэратора к питательному насосу теплообменника, в котором деаэрированная вода охлаждается до 70—75° С, подогревая холодную воду, направляемую в деаэратор. Этот же способ иногда применяется, когда подогрев воды в деаэраторах до 102—105° С сужает возможность использования отключаемых водяных экономайзеров, особенно в установках с рабочим давлением 12—15 кГ см .  [c.237]


В начальный период освоения котлов-утилизаторов УС-2,6/39 для охлаждения нитрозных газов под разрежением питательная вода в экономайзер котла подавалась после деаэратора атмосферного типа с температурой 104 °С. Перед пуском металл змеевиков котла разогревался до температуры 100 °С прокачкой воды через котел в деаэратор. Первые пуски проходили с высокой коррозией экономайзеров, вызывавшей аварии. После подогрева питательной воды до 120 °С в пароводяном теплообменнике случаи коррозии были исключены.  [c.168]

Стали кадмиевыми припоями паяли только после меднения. Активирование кадмиевых припоев цинком, имеюш,им высокое химическое сродство с железом, позволило применить их для пайки сталей и одновременно повысить их прочность. Припой такого типа, содержащий 60—85% d 15—50% Zn и 0,4—5% Ni с температурой плавления 290—270° С, пригоден для пайки не только меди, цинка и латуни, но и сталей, в том числе и коррозионно-стойкой. Предел прочности стыковых соединений из медного листа толщ,иной 2 мм, паяных таким припоем, равен 23,3 кгс/мм, между тем предел прочности соединений из того же металла, паянных оловянно-свинцовым припоем, 5,5 кгс/мм. Этот припой не содержит серебра и применяется для пайки изделий в электротехнической промышленности и теплообменников. Введение никеля в припой дополнительно активирует и упрочняет его, так как никель образует с железом непрерывный ряд твердых растворов, а с кадмием — фазу типа у-латуни.  [c.96]

Теплообменники типа металл — воздух доволвно широко применяются иа экспериментальных стендах и в исследО Ватель-ских реакторах.  [c.101]

Направление перехода электронов от жидкого металла к металлу стенки или обратно (на горячем и охлаждаемом участках) зависит от характера термо-э.д. с. (величины, знака), возникающей в цепи, составленной из этих металлов. Термо-э.д. с. жидких металлов является линейной функцией температуры. В зависимости от сопряженного металла пары, она может быть возрастающей и убывающей. Для лития она заметно увеличивается, тогда как для остальных щелочных металлов уменьшается с повышением температуры, причем особенно сильно у рубидия и цезия [108]. Абсолютная термо-э.д. с. металла стенки в большой степени зависит от состава стали, фазовых и магнитных превращений и характера предварительной механической и термической обработки. Необходимые данные по этим вопросам отсутствуют в справочной и периодической литературе. Однако, интерполируя данные по другим сталям [21, 109], можно принять, что абсолютная термо-э. д. с., например, углеродистой стали (0,50% С) и стали типа 18-8Т, равна соответственно —4,6 и —3,4 MKejapad при 100° С и —6,4 и —4,8 MKejapad при 300° С. Значит, в теплообменниках с литием (Е- — ст>1) облегчается переход электронов от жидкого металла к стали и улучшается передача тепла, тогда как в натриевых, калиевых и особенно в рубидиевых и цезиевых теплообменниках контактное термическое сопротивление, вызываемое термо-э. д. с., должно быть большим и возрастать с повышением температуры.  [c.46]

В установках с жидкометаллическими теплоносителями применяются в основном три типа расположения продольно-омы-ваемых пакетов труб (стержней) 1) по вершинам правильного треугольника 2) по вершинам квадрата 3) по концентрическим окружностям (эта геометрия применяется в теплообменниках маталл — металл).  [c.164]

Теплообменники этого типа изготовляют из металлов или их сплавов и футеруют возможно более тонкой пленкой полимерного материала. К теплообменникам, изготовляемым из полимерных материалов, относятся радиаторы, вакуум-выпариватели, испарители холодильников, конденсаторы.  [c.382]

По сравнению с теплообмен-никами типа металл — вода воздушные теплообменники имеют более простую конструкцию, обеспечивают большую безопасность в эксплуатации, обладают возможностью более тонкой ре- Рис. 7.6. Конструкция теплооб-гулировки тепловой мощности, менника типа натрий — воздух  [c.101]

Различают теплофикационные сети закрытого и открытого типов. При закрытой системе у потребителей устанавливаются поверхностные теплообменники, в которых сетевая вода подогревает до нулшой температуры водопроводную воду. При открытой системе расходуется горячая сетевая вода—непосредственный водо-разбор. Качество подпиточной воды должно обеспечить в подогревателях и трубопроводах отсутствие загрязнений, накипеобразования и интенсивной коррозии металла.  [c.134]

Консервация ингибированным воздухом. Химическую аппаратуру со сложными внутренними устройствами типа колонн теплообменников, изготовленную из черных металлов и поставляемую в собранном виде, консервируют парами летучих ингибиторов. Сущность этого способа заключается в том, что летучий ингибитор (типа нитрита дициклогексиламмония, или НДА) в специальной установке (сублиматоре) под воздействием нагнетаемого теплого воздуха сублимируется и насыщает своими парами воздух. Затем насыщенный парами ингибитора воздух (ингибированный) поступает в полость консервируемого изделия.  [c.206]

Пористые высокогеплопроводные металлы используются также и при изготовлении теплообменников сосредоточенного теплообмена (дискретного типа) для получения сверхнизких температур. Предельно развитая поверхность теплообмена пористой структуры позволяет уменьшить граничное термическое сопротивление Калицы, вызывающее температурный скачок на границе раздела жидкость - твердое тело, через которую передается теплота. Такой теплообменник представляет собой блок, содержащий две камеры, заполненные проницаемым высокотеплопроводным материалом с большой удельной поверхностью Обьпшо и пористая матрица и блок выполняются из меди. При растворении Не в Не на пористой насадке в одной из камер температура получаемой смеси может понизиться до 0,011 К. За счет этого происходит охлаждение всего блока и протекающего через другую камеру потока Не .  [c.17]


Коррозия теплообменников. В соответствии с технологической схемой подготовки сырой нефти перед деэмульгацией ее подогревают сначала до 30—40° С товарной нефтью, выходящей из установок, а затем до 60—70° С в паровых теплообменниках или огневых печах. Для подогрева сырой нефти используют теплообменники двух типов кожухотрубные и труба в трубе. Теплообмен между сырой и нагретой нефтью осуществляется по принципу противотока. Наиболее уязвимой частью подогревателей по отношению к коррозии являются трубные пучки. Срок их службы составляет 1,5—3 года, что зависит в основном от типа применяемого реагента-деэмульгатора. Особенно интенсивно развивается коррозия трубок в местах их развальцовки на трубных досках. Здесь кроме агрессивного воздействия самой среды сказываются еще и механические напряжения, возникающие вследствие пластической деформации металла и больших перепадов температур между сырой и товарной нефтью.  [c.168]

Промышленная установка, предназначенная для получения покрытия Ni — В в стандартных растворах, приведена на рис 39 Ванна 1 объемом 700 л изготовленная из коррозионно-стойкой стали, включена в цепь постоянного тока в качестве анода, чтобы предотвратить восстановление ионов металла на ее стенках Пластины 2, служащие катодами, находятся у торцовых сторон ванны Специальная схема включает электроды сравнения 3, изготовленные в виде тонких никелевых стержней, н регулирующее устройство 4, поддерживая на ванне постоянное значение ( 0,6 В) зашитного потенциала Катоды и электроды должны иметь по возможности малую поверхность для предупреждения выпадения осадка Система циркуляции и регенерации раствора включает в себя центробежный насос 5, теплообменник 6 для поддержания необходимой температуры, бачки 7 для пополнения раствора реагентами и фильтры 8, через которые откорректированный раствор вводится вновь в ванну По аналогичной схеме работают установки барабанного типа.  [c.101]

В работе [244] представлены результаты инспекции алюминиевых узлов экспериментальной опреснительной установки в г. Фрипорт (Техас) после 36-мес эксплуатации. Исследовано состояние 5 сплавов для трубопроводов (1200, 3003, 5050, 5052 и 6063), 2 типов листового материала (5454 и 6061) и трубок из сплава 6061, экспонированных в типичных для подобных установок условиях. Во всех случаях не наблюдалось существенной коррозии алюминиевого оборудования, включающего трубопроводы, трубные доски, фланцы, камеры, крышки и несущие конструкции. Не отмечено также серьезной коррозии под раковинами. Внешнее состояние установки также было отличным. Небольшой нит-тинг, наблюдавшийся в некоторых трубках теплообменника еще после первых 6 мес эксплуатации, существенно не усилился. Его появление объяснялось, по-видимому, присутствием на поверхности ионов тяжелых металлов. С течением времени стойкость поверхности сплава к коррозии возросла, а новые очаги коррозии не возникали. Сравнительные данные о коррозионном поведении труб из различных сплавов в теплообменнике при скорости потока 1,5 м/с и температурах 52 и 99 °С представлены в табл. 78.  [c.202]

В Институте машиноведения исследованы некоторые перспективные типы биметаллических материалов (рис. 1). Биметаллы, представляющие собой корпусную сталь, плакированную нержавеющей аустенитной сталью, широко применяются в энергомашиностроении (плакированные корпуса реакторов, лопасти гидротурбин, теплообменники т. д.), нефтяном и химическом машиностроении, оборудований для производства минеральных удобрений и пр. Применение коррозионно-стойких двухслойных сталей в химическом машиностроении позволяет экономить до 80% нержавеющей стали, причем стоимость плакированных листов ниже стоимости нержавеющего монометалла на 50-60%. Это важнейшее преимущество биметаллов по сравнению с традищюнными металлами. Методы оценки статической и циклической трещиностойкости биметаллов, разработанные в ИМАШ АН СССР, открьшают новые возможности для проектирования надежных изделий из биметаллов.  [c.14]

Другой тип образуют регенеративные теплообменники. В них теилоотдающий и тепловоспринимающий потоки попеременно, периодически, приводятся в соприкосновение с некоторой достаточно теплоемкой массой (кирпичная или керамическая насадка, металл в виде проволоки, листов, шариков и т. п.) так, что масса эта в течение одной части цикла аккумулирует тепло, в течение же второй части цикла отдает его среде, которая подлежит нагреванию. Процесс теплообмена является при этом в пределах каждого цикла нестационарным. Регенераторы применяются в металлургических производствах, иногда в газогенераторах, а также в котельных и газотурбинных установках.  [c.142]

Модель для испытаний была выполнена в виде вертикального теплообменника по типу труба в трубе (рис. 7.20). Пароводяная смесь проходила снизу вверх по трубе диаметром 16x3, выполненной из стали 20. Жидкий металл двигался сверху вниз по кольцевому каналу, сформированному наружной трубой диаметром 32x3 и внутренней трубой. Часть опытов проведена на восьми-трубной модели длиной 12,7 м. Характерным отличием этой модели от представленных выше является то, что температура натрия в межтрубном пространстве измерялась с помощью термопар.  [c.264]

Задача усложняется техническими требованиями и ограничениями, накладываемыми на выбор компоновочных вариантов. Так, для получения достаточно стабильной характеристики основного пароперегревателя ine = / Фпе) при частичных нагрузках необходимо выдержать определенное соотношение количеств тепла, передаваемых пару в радиационных и в конвективных поверхностях нагрева. Температура газов перед первой конвективной поверхностью нагрева, а также перед экономайзером и воздухоподогревателем не должна превышать предельных значений, зависящих от свойств сжигаемого топлива, от способов топливосжигания и шлакоудаления, от сортов металла и типов конструкций. Температурные напоры в поверхностях нагрева не могут быть отрицательными или равными нулю. Для всех последовательно расположенных теплообменников в полурадиационной, основной конвективной и хвостовой частях агрегата требуется выдерживать общие габариты газоходов. Причем ограничения на предельные размеры агрегата также являются общими для различных узлов.  [c.42]

В аппаратах второго типа—радиационных теплообменниках— величина теплоподвода практически не зависит от температуры рабочего тела. Так, в топке парогенератора тепло трубам экранов передается почти исключительно излуче1П1ем. Независимый обогрев имеет место такл<е при пропускании электрического тока через металл трубы, когда выделяется джоулево тепло. В ядер-ном реакторе, охланедаемом однофазным потоком, тепловыделение также не зависит от температуры потока. Электронагреватель и ядерный реактор — примеры радиационных теплообменников.  [c.91]

Изготовление коррозионностойкого химического оборудования является, по-видимому, второй по масштабу областью применения тантала. Помимо прочности и по существу полно11 инертности к воздействию сильно агрессивных нещелочных сред при обычных температурах (за исключением р2, HF и свободного SOa), тантал характеризуется чрезвычайно высокими коэф( )ициентами теплопередачи. Последнее обстоятельство позволяет применять конструкции с тонкими стенками для химического оборудования в случае отсутствия коррозии и пленок продуктов коррозии на поверхности, пузырькового типа парообразования па поверхности при нагревании большинства жидкостей и образования каплеобразного конденсата на паровом или конденсирующей стороне теплообменника. Из всех металлов тантал больше других напоминает по коррозионной стойкости стекло, и его часто используют в химическом машиностроении в сочетании со стеклом, футерованной стеклом сталью и другими неметаллическими материалами.  [c.740]


Несмотря на то что поперечное сечение захвата тепловых нейтронов у тантала слишком велико, чтобы его можно было использовать для внутренних частей (или вблизи них) ядерпых реакторов большинства типов, он может быть использован в реакторах на быстрых нейтронах. Нацболыпип интерес, однако, представляет применение тантала в теплообменниках с жидкими металлами, например натрием или сплавами натрий — калий, при высоких температурах и в контейнерах для таких жидкометаллических систем, как сплав висмут—уран [24, 25].  [c.741]

Наиболее часто используются одно- и многоэлементные линзовые компенсаторы, изготовляемые обкаткой из коротких цилиндрических обечаек (рис. 4.1.4, а, в) или сваркой из двух полулинз (рис. 4.1.4, б), полученных штамповкой из листового металла. Компенсирующая способность линзового компенсатора увеличивается пропорционально числу линз, однако применять более четырех линз не рекомендуется, так как теплообменник теряет осевую жесткость. При установке компенсаторов на горизонтальных аппаратах в нижней части каждой линзы сверлят дренажные отверстия с заглушками для слива воды или теплоносителя при гидроиспытаниях и ремонте. Кроме линзовых предложен еще ряд компенсаторов в корпусе других типов из плоских элементов (рис. 4.1.4, г), из элементов сферы (рис. 4.1.4, d), тороидальных (рис. 4.1.4, в) и др. Наиболее эффективны тороидальные компенсаторы, изготовляемые из труб с последующей резкой их по внутренней поверхности тора. Распределение напряжений по самому компенсатору достаточно плавное, однако наружные сварные  [c.360]

Патент США, ИР 3974090, 1976 г. Хорошо известны некоторые вещества, способные BnabJBaTb различные ионы в водных растворах. Например, вещества, связывающие ионы кальция, железа и др., широко используются для обработки вoдьJ с целью предотвращения реакции образования осадков в котлах, охладительных башнях, теплообменниках и т.п. Некоторые вещества такого типа известны также в качестве ингибиторов коррозии, т.е. они ингибируют коррозию металлов в воде, особенно в воде, насыщенной кислородом.  [c.21]

Патент США, № 4089796, 1978 г. В общем случае воду и водные системы можно разделить на две категории. К одной относятся такие системы, которые образуют отложения на поверхности теплообменников. Системы другой категории Bbi3bjBaraT коррозию. Если имеется водная система, образующая отложения, то обычно она некоррозионно-активиа, так как любой осадок будет в некоторой степени защищать металл от коррозии. Если pH такой водной системы изменится, то она может стать коррозионно-активной. Поэтому в большинстве случаев при обработках воды стараются добавлять в нее как ингибиторы коррозии, так и ингибиторы образования отложений. Однако некоторые воды или водные системы являются и коррозионно-активными, и образуют отложения. В этих случаях необходимо использовать ингибиторы обоих типов.  [c.35]

Особенно сильной коррозии часто подвергаются сварные соединения, если не приняты меры к тому, чтобы их потенциал не оказался менее благородным, чем потенциал основного металла. Бровер наблюдал сильную коррозию сварного шва на трубках из нержавеющей стали типа 304 (18-8). Трубки многократно травили ингибированной 10%-ной соляной кислотой при температуре 70° С. Лабораторные коррозионные испытания подобных пар в ингибированной соляной кислоте показали, что коррозия в основном развивается на сварном шве (более 250 MMjeod). Скорость коррозии металла шва (сталь типа 312) в изолированном виде оказалась в 12—15 раз больше скорости коррозии малоуглеродистой стали или нержавеющей стали типа 304. Разрушение сварного шва в теплообменниках автор объясняет возникновением контактной коррозии между аустенитной и ферритной фазами сплава. Исследования стационарных потенциалов и поляризационных характеристик типичных аустенитных и ферритных нержавеющих сталей подтвердили это предположение. Было показано, что наиболее целесообразно в этом случае использовать инконель А и сварочные электроды из стали типа 310 (24—26% Сг 19—22% Ni макс. 0,25% С). Для трав-  [c.185]

Встречается, когда на метал тпческой поверхности возникают участки с неравномерным доступом кислорода к поверхности (образование гальваионар концентрационного типа). Механизм процесса — электрохимическая коррозия с кислородной деполяризацией, при этом анодами являются участки с меньшей концентрацией кислорода. Форма повреждений равномер 1ая и язвенная. Наблюдается в спокойных жидкостях и в застойных местах прн движении жидкости в трубопроводах, теплообменниках, около линии раздела жидкость — атмосфера ма поверхности металла в царапинах, раковинах и т. д. Защитные. мероприятия- регулирование состава среды (главным образом обескислороживание) и устранение застойных явлений и других причин неравномерной аэрации  [c.668]

Тантал с успехом может применяться для изготовления теплообменной аппаратуры и эксплуатироваться в тех средах, в которых другие металлы и сплавы оказываются нестойкими. При нагревании тантал легко поглощает газы и охрупчивается, поэтому термоообработка проводится в условиях глубокого вакуума. Тантал выпускается в виде отожженных холоднокатаных листов, неотожженной проволоки. Из него изготовляют различного типа змеевики, нагреватели, конденсаторы, ко у-хотрубчатые и другие теплообменники, лопасти мешалок, детали центробежных насосов и прочее оборудование. Тонкие листы тантала используются для покрытий (футеровки) различного оборудования из углеродистой стали, например автоклавов, валов, мешалок и др. Высокая температура плавления (2996°С) дает возможность применять тантал, в рентгено-, электро- и радио-тёхншсе в качестве тугоплавкого металла.  [c.131]

Ф и г. 130. Циркуляция замедлителя в реакторе гетерогенного типа. Горючее в виде стержней из природного или обогащенного урана можно также использовать Рцззэ. Чтобы получить достаточный тепловой к.п.д. установки, жидкий замедлитель должен выдерживать высокую температуру. Для этой цели можно использовать расплавленный металл, например свинец или висмут. В этих условиях необходимо иметь бетонную защиту не только для реактора, но и для теплообменника, так как замедлитель будет содержать радиоактивные элементы, образовавшиеся под действием нейтронов, а в случае плохой герметичности чехлов урановых стержней — и продукты деления.  [c.201]


Смотреть страницы где упоминается термин Теплообменники типа металл — металл : [c.210]    [c.147]    [c.183]    [c.582]    [c.784]    [c.369]   
Смотреть главы в:

Экспериментальные жидкометаллические стенды  -> Теплообменники типа металл — металл



ПОИСК



Теплообменники

Теплообменники типа металл — вода

Теплообменники типа металл — воздух (газ)

Типы теплообменников



© 2025 Mash-xxl.info Реклама на сайте