Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общее условие термодинамического равновесия термодинамических систем

Таким образом, общие условия устойчивого равновесия термодинамических систем в различных случаях определяются экстремальными значениями соответствующих термодинамических потенциалов. Эти условия являются не только достаточными, но и необходимыми, если обеспечены все другие условия для установления равновесия (поскольку найденные нами условия не являются единственными для возможности протекания процессов) .  [c.124]

Общие условия устойчивости равновесия термодинамических систем приводят к тому, что внешнее воздействие, выводящее систему из состояния равновесия, вызывает в этой системе такие процессы, которые ослабляют это воздействие. Это положение было установлено Ле Шателье в 1884 г. и обосновано Брауном в 1887 г. и названо принципом Ле Шателье — Брауна.  [c.131]


Общие условия устойчивости равновесия термодинамических систем приводят к тому, что внешнее воздействие, выводящее систему из состояния равновесия, вызывает в этой системе такие  [c.109]

Термодинамическая устойчивость системы определяется второй вариацией какого-либо термодинамического потенциала, если она не равна нулю. Найдем вначале общее выражение устойчивости системы, а потом исследуем и вторую вариацию соответствующего термодинамического потенциала. Рассмотрим закрытую систему, находящуюся в термостате с температурой Т под постоянным давлением Р. Общим условием устойчивости равновесия такой системы является минимум ее энергии Гиббса G = = Е—rS-f-PV. Это означает, что состояние системы в термостате при данных Р и Г с координатами (экстенсивными параметрами) У и S является устойчивым, если при небольшом спонтанном изменении координат ее энергия Гиббса G возрастает AG = = Gi — G>0, т. е.  [c.105]

ОБЩЕЕ УСЛОВИЕ ТЕРМОДИНАМИЧЕСКОГО РАВНОВЕСИЯ ТЕРМОДИНАМИЧЕСКИХ СИСТЕМ  [c.182]

Рассмотрим равновесную систему, состоящую из капель жидкости, распределенных в паре того же вещества. Температуры обеих фаз одинаковы давление же в капле выше, нежели давление окружающего ее пара. Общее условие взаимного равновесия фаз, образующих систему, заключается в равенстве (с точностью до малых величин) их удельных термодинамических потенциалов, т. е.  [c.41]

Теперь, рассматривая изолированные системы, состоящие из двух (или более) фаз, найдем общие условия фазового равновесия. Рассматривая изолированную термодинамическую систему, состоящую из двух подсистем 1 ъ. 2, используем тот же метод, что и в предыдущем параграфе. Отличие будет состоять в том, что теперь вещество в подсистемах находится в двух разных фазах, причем количество вещества в подсистемах может меняться (переход вещества из одной фазы в другую).  [c.133]

В связи с этим необходимо иметь в виду, что приведенные выше следствия исходных постулатов термодинамики получены без учета ограничений на равновесия внутри системы. Если же в ней по условиям задачи между отдельными частями находят-ся полупроницаемые или непроницаемые для энергии и (или) вещества границы, т. е. имеются ограничения на возможные виды контактов внутри системы, то взаимосвязь внешних и внутренних переменных, общая вариантность равновесия и другие следствия постулатов справедливы только для гомогенных частей системы. Этим, в частности, объясняется особенность термодинамического рассмотрения гетерогенных систем. При ограниченных равновесиях в таких системах могут не существовать некоторые интенсивные свойства, характерные для однородных частей, входящих в состав системы.  [c.36]


Основное уравнение термодинамики для квази-статических процессов позволяет, как мы видели, ввести ряд термодинамических потенциалов, с помощью которых можно исследовать поведение термодинамических систем при этих процессах. Покажем теперь, что основное неравенство термодинамики для нестатических процессов с помощью введенных термодинамических потенциалов позволяет установить общие условия термодинамического равновесия и устойчивости различных систем. С точки зрения термодинамики эти условия являются достаточными. Однако, допуская в соответствии с опытом существование флуктуаций в системах (и, следовательно, выходя за рамки исходных положений термодинамики), можно доказать, что они являются также и необходимыми.  [c.119]

Таким образом, наличие флуктуаций в системах приводит к необходимости максимума энтропии при равновесии и, следовательно, всякий раз, когда это условие не выполнено, система не находится в устойчивом равновесии. Поэтому общее условие (6.4) является необходимым и достаточным условием устойчивости, а общее условие 5 5 < О является лишь достаточным условием устойчивости изолированных термодинамических систем.  [c.122]

На основе такого представления, рассматривая выход системы из состояния равновесия как результат виртуальных отклонений внутренних параметров от их равновесных значений, можно, пользуясь основным неравенством термодинамики (3.59) для нестатических процессов, получить общие (т. е. для любых систем) условия термодинамического равновесия и устойчивости. При этом, поскольку состояние термодинамических систем определяется не только механическими параметрами, но и специально термодинамическими (температура, энтропия и др.) и другими параметрами, вместо одного общего условия равновесия для механических систем (6.2) для термодинамических систем их будет несколько в зависимости от отношения системы к внешним телам (адиабатная система, изотермическая система и др.).  [c.100]

Решая в каждом таком случае общее условие равновесия системы совместно с уравнениями для виртуальных измерений внутренних параметров, можно найти конкретные условия равновесия термодинамических систем.  [c.100]

При выводе условий фазового равновесия (4.2) предполагалось, что давления и температуры обеих фаз в состоянии равновесия одинаковы. Это предположение очевидно. Однако, строго говоря, следовало бы показать, что из общих условий равновесия термодинамической системы вытекают все три соотношения (4.2). Формальное доказательство этого состоит в следующем. Будем рассматривать обе фазы в совокупности как изолированную систему. В такой системе объем, внутренняя энергия и количество вещества неизменны, вследствие чего  [c.124]

Чтобы сформулировать условия термодинамического равновесия, воспользуемся общим соотношением (1.41) для количества теплоты, выражающим первое начало термодинамики (причем для простоты будем считать систему двухпараметрической),  [c.182]

При выводе условий фазового равновесия предполагали, что давления и температуры обеих фаз в состоянии равновесия одинаковы. Эти предположения очевидны. Тем не менее следовало бы показать, что из общих условий равновесия термодинамической системы вытекают все три соотношения (3.20). Формальное доказательство этого состоит в следующем. Рассмотрим обе фазы в совокупности как изолированную систему и примем для определенности, что общий объем системы, равный сумме объемов обеих фаз и общая энтропия системы,  [c.201]

Рассмотренные здесь положения, касающиеся вопроса о химическом равновесии, не имеют никакой видимой связи со вторым законом термодинамики. Между тем общие принципы термодинамического равновесия, о которых уже говорилось (см. 12), применимы, конечно, и к химическим реакциям. Условие максимума энтропии (4.20), справедливое для изолированной (или даже закрытой адиабатной) системы, применяется не только для простых (т. е. гомогенных однокомпонентных) систем, его можно использовать и для анализа систем с фазовыми и химическими превращениями. Наиболее последовательный и простой путь такого исполь-  [c.244]


Рассмотрение условий равновесия различных термодинамических систем мы начнем со случая изолированной системы. В такой системе внутренняя энергия U и общий объем ее V имеют неизменное значение. Будучи выведена из состояния устойчивого равновесия, система через некоторое время возвращается в это состояние, причем вследствие необратимости релаксационных процессов энтропия системы по мере приближения к состоянию равновесия будет возрастать до тех пор, пока не достигнет максимума. Из этого вытекает следующее условие термодинамического равновесия изолированной системы в состоянии устойчивого равновесия энтропия изолированной системы имеет максимальное значение, т. е.  [c.116]

В разд. 2 даны основные законы термодинамики и указаны важнейшие сферы их применения, рассмотрены фундаментальные определения, обеспечивающие понимание общности методов термодинамики для анализа различных явлений, включая реальные процессы теплоэнергетики. Описаны основные термодинамические свойства твердых тел, жидкостей и газов, представлены дифференциальные уравнения термодинамики, устанавливающие взаимосвязи между этими свойствами. Рассматриваются общие условия равновесия различных видов термодинамических систем, включая фазовое равновесие. Приводятся уравнения для расчета термодинамических свойств газовых смесей, в том числе для влажного воздуха.  [c.7]

После того как введены основные термодинамические потенциалы, можно записать общие условия равновесия термодинамических систем, а также возможные изменения энтропий и термодинамических потенциалов при бесконечно малых отклонениях системы от положения равновесия. Эти условия приведены в табл. 5, заимствованной из книги Р. Кубо [38].  [c.39]

Почти половина этого сочинения посвящена основам термодинамики с подробным изложением первого и второго законов и и.х. следствий. Здесь говорится об энтропии, свободной энергии, изобарном потенциале и условиях равновесия термодинамических систем. Заканчивается эта часть книги изложением теоремы Нернста. Автору удалось в небольшом курсе изложить наиболее существенные вопросы общей теории термодинамики. При проведении в этой книге отдельных исследований используются общие дифференциальные уравнения термодинамики. Вторая часть этого сочинения посвящена общей теории фаз.  [c.227]

Сочинение проф. Акопяна имеет следующие главы термодинамические системы предварительные сведения о системе жидкость— пар работа теплота процессы циклы первое начало применение первого начала к обратимым процессам применение первого начала к системе жидкость — пар теория изодинамических процессов дросселирование свойства идеального газа наиболее общее выражение первого начала теория течения второе начало цикл Карно и его применения энтропия элементы теории тепловых машин диаграммы Т—5 циклы тепловых машин получение низких температур и сжижение газов теория термодинамического равновесия равновесие смеси идеальных газов общие условия равновесия гетерогенных систем о законах смешения термодинамического равновесия двухфазные двухкомпонентные смеси теорема Нернста.  [c.370]

Общие условия равновесия термодинамических систем  [c.50]

На основании такого представления, рассматривая выход системы из состояния равновесия как результат виртуальных. отклонений внутренних параметров от их равновесных значений, найдем общие условия равновесия термодинамических систем.  [c.50]

Общие условия равновесия любых систем, установленные Гиббсом на основании исследования свойств функции термодинамического потенциала G [см. стр. 204 уравнение  [c.218]

Таким образом, равенство 55 =О определяет общее условие равновесия, а неравенство 5"5<0 — общее условие устойчивости равновесия изолированных термодинамических систем. Эти условия являются достаточными, так как если бы система, имея максимальную энтропию, не находилась в устойчивом равновесии, то при приближении к нему ее энтропия начала бы расти, что противоречит предположению о ее максимальности. Доказать необходимость максимальной энтропии при устойчивом равновесии изолированной системы исходя из основного неравенства (6.3) нельзя, так как из него не следует, что равновесие невозможно при немаксимальной энтропии. Однако, принимая во внимание молекулярную природу термодинамических систем и наличие обусловленных ею флуктуаций внутренних параметров, видим, что состояние равновесия без максимума энтропии невозможно, так как благодаря этим флуктуациям в системе возникают неравновесные процессы, сопровождающиеся ростом энтропии и приводящие систему к равновесию при максимальной энтропии.  [c.122]

Это значит, что первая вариация энтропии равна нулю, а вторая меньше нуля. Равенство нулю первой вариации является лишь необходимым условием экстремума и не обеспечивает того, чтобы энтропия имела именно максимум. Достаточным условием максимума энтропии является отрицательное значение ее второй вариации, которое и обеспечивает устойчивость равновесия. Если же при 65 = 0 вторая вариация энтропии положительна (минимум энтропии), то соответствующее состояние системы будет равновесным, но совершенно неустойчивым , так как благодаря флуктуациям в ней начнутся неравновесные процессы, которые и приведут ее в равновесное состояние с максимумом энтропии. Так как дальше энтропия расти не может, то это равновесие будет устойчивым. Таким образом, равенство б5 = 0 определяет общее условие равновесия, а неравенство 6 5<О — общее условие устойчивости равновесия изолированных термодинамических систем. Эти условия являются достаточными, так как если бы система, имея максимальную энтропию, не находилась в устойчивом равновесии, то при приближении к нему ее энтропия начала бы расти, что противоречит предположению о ее максимальности. Доказать необходимость максимальной энтропии при устойчивом равновесии изолированной системы исходя из основного неравенства (6.3) нельзя, так как из него не следует, что равновесие невозможно при немаксимальной энтропии. Однако принимая во внимание молекулярную природу термодинамических систем и наличие обусловленных ею флуктуаций внутренних параметров, видим, что состояние равновесия без максимума энтропии невозможно, так как благодаря этим флуктуациям в системе возникают неравновесные процессы, сопровождающиеся ростом энтропии и приводящие систему к равновесию при максимальной энтропии.  [c.101]


Принцип смещения равновесия в зависимости от темп-ры высказал голл. физико-химик Я. Вант-Гофф (1884), в общем виде установлен франц. химиком А. Ле Шателье (Н. Le hatelier 1884) и термодинамически обоснован нем. физиком К. Брауном (К. Braun 1887). Исторически этот принцип был сформулирован по аналогии с Ленца правилом] строго он выводится из общего условия термодинамич. равновесия (максимальности энтропии). Ле Ш.—Б. п. позволяет определять направление смещения равновесия термодинамич. систем без детального анализа условий равновесия.  [c.347]

Таким образом, общие критерии равновесия термодинамических систем математически формулируются в виде задачи на условный экстремум той или иной характеристической функции. Экстремум ищется при этом в обобщенном пространстве дополнительных внутренних переменных (см. с. 37), а дополнительными условиями является постоянство естественных независимых переменных характеристической функции. Выбор характеристической функции и критерия равновесия связан только с набором термодинамических величин, равновесные значения которых известны и которые могут, следовательно, использоваться в качестве параметров при расчете равновесия, т. е. при нахождении других, неизвестных свойств. С этой точки зрения вариационная запись критерия равновесия также имеет определенные преимущества перед дифференциальной записью, так как не создает ощибочных представлений, что для применения того или иного общего условия типа (11.1) необходимо  [c.110]

На невозможность тепловой смерти Вселенной указывает и общая теория относительности. Согласно этой теории мир должен рассматриваться не как замкйутая система, а как система, находящаяся в переменном гравитационном поле. Это значит, что Вселенная представляет собой систему с иестационарньши внешними условиями, поэтому возрастание энтропии не приближает ее к термодинамическому равновесию.  [c.156]

Общие условия равновесия в многокомпонентных системах были сформулированы в гл. 9. Разумеется, сложности расчета термодинамических свойств таких систем с увеличением числа компонент нарастают. Поэтому в данной главе будут рассмотрены лишь двухкомло-нентные (бинарные) системы. Если в бинарной системе равновесно сосущест(вуют две фазы, то в соответствии с правилом фаз Гиб бса такая система имеет две степени свободы. Это означает, что из четырех величин (р, Т, х(2)), характеризующих состояние тайкой системы, лишь две являются независимыми, остальные две являются их функциями. Обычно, чтобы не иметь дело с функциями двух переменных, одну из независимых величин задают и считают постоянной и отыскивают овяЗ И между зависимыми переменными и одной независимой. В соответствии с этим при анализе равновесия жидкость — пар в бинарной системе наибольший интерес представляет нахождение следующих зависимостей  [c.185]

Системы, к которым применим тер.модин амичсский метод исследо вания, в общем случае являются сложными системами, состоящими из тел различного химического состава, находящихся в различных агрегатных состояниях. При этом между телами, образующими термодинамическую систему, могут протекать различные химические реакции и переходы веществ из одних фаз в другие. В свя.зи с этим анализу условий равновесия сложных систем должно предшествовать введение ряда новых понятий и определений.  [c.74]

Построение полных диаграмм состояния даже в случае относительно простых тройных систем требует выполнения сложного и трудоемкого эксперимента. Трудности особенно велики при изучении тугоплавких систем, когда температуры плавления сплавов достигают 3000° С и более. Из-за методических трудностей динамические методы (ДТА, изучение зависимостей температура — свойство) выше 2000° С используются сравнительно мало. В то же время, как оказалось, для углеродсодержащих систем (в частности, с молибденом и вольфрамом), как и для металлических, характерны быстропротекающиевысокотемпературные превращения типа мар-тенситных. В этом случае использование метода отжига и закалок для исследования фазовых равновесий при высоких температурах малоэффективно. С другой стороны, даже после длительных отжигов при относительно невысоких температурах (< 1500° С) часто в сплавах не наблюдается состояния термодинамического равновесия. Для правильной интерпретации экспериментальных данных, учитывая столь сложное поведение сплавов, особенно важно знание общих закономерностей взаимодействия компонентов в рассматриваемых системах. Поэтому, наряду с обстоятельными многолетними исследованиями с целью построения полных диаграмм состояния [1, 9, 121, целесообразно выполнять работы, цель которых — сравнительное исследование немногих сплавов многих систем в идентичных условиях, выявление на этой основе общих черт в поведении систем-аналогов [3, 12] и использование полученных результатов при оценке собственных экспериментальных и литературных данных и при планировании новых исследований [4].  [c.161]

Принятие локального термодинамического равновесия существенно облегчает задачу, поскольку все радиационные характеристики вещества в этом случае однозначно зависят только от частоты и термодинамических параметров. Поэтому для определения излучательных и поглощательных характеристик достаточно рассмотреть йзлучающие системы, в которых устанавливается термодинамически равновесное излучение, подчиняющееся общим закономерностям, вытекающим из принципов термодинамики. Такое рассмотрение равновесных излучающих систем позволяет установить ряд законов, которым подчиняется термодинамически равновесное излучение, и пайти связь излучательных и поглощательных характеристик вещества в условиях термодинамического равновесия.  [c.59]

В условиях внутреннего равновесия, а следовательно, и при квазистатических изменениях состояния влажный пар, как термодинамическое тело, представляет собой систему с двумя независимыми параметрами Т и о или р и V (V — удельный объем нарожидкостной смеси). Макроскопические свойства таких систем описываются общими дифференциальными соотношениями термодинамики. Эти соотношения, вытекающие из двух основных законов, не будучи связаны с особенностями строения частного вещества, распространяются на любые тела, в любом их состоянии, в том числе и на парожидкостную среду.  [c.8]

Полученное неравенство Рашбрука связывает три критических показателя. Оно является совершенно общим, поскольку вытекает из термодинамического условия равновесия, справедливого для всех физических систем.  [c.363]

Термохимия в учебниках по технической термодинампке как по содержанию, так и по подбору проводимых в ней расчетов должна быть строго направленной. Эта часть не должна содержать тех общих данных физической химии, которые не имеют непосредственного отношения к тем теплотехническим исследованиям и расчетам, ради которых термохимия вводится в учебники по технической термодинамике. Постановка отдельных тем термохимии и методы их исследований должны носить инженерный характер. Отдельные исследования и расчеты должны по возможности быть проще, однако без снижения научной строгости. Так, например, учитывая малое число часов, отводимое на лекции по термохимии, целесообразно аналитическое выражение условий химического равновесия устанавливать не через условия минимума свободной энергии или термодинамического изобарного потенциала, а как следствие закона действия масс и равенства скоростей прямой и обратной реакций при химическом равновесии, хотя первый метод исследования равновесия химических систем и является более общим.  [c.339]


ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ -- состояние термодинамич. системы, когда ее параметры состояния не меняются с течением времени и когда в системе отсутствуют потоки любого тина. С микросконич. точки зрения такое состояние есть состояние динамического (или подвижного) равновесия (между отдельными частями системы возможен, напр., обмен частицами), так что равновесные значения термодинамич. параметров пе фиксированы строго во времени, а соответствуют статистическим средним величинам, около к-рых возможны флуктуации. В термодинамике полагают, что состояние Т. р. обладает след, свойствами если система, помещенная в неизменные внешние условия (напр., изолированная или находящаяся в термостате), достигла состояния Т. р., то она не может самопроизвольно выйти из этого состояния (свойство устойчивости, самоненарушаемости Т. р.) если система А находится в равновесии порознь с системами В и С, то две последние нри тепловом контакте также будут находиться в Т. р. друг с другом (свойство транзитивности Т. р.). Первое свойство ограничивает круг рассматриваемых в термодинамике систем теми, в к-рых флуктуации их характеристик несущественны и для описания к-рых можно отвлечься от молекулярной структуры вещества. Второе нозьо-ляет ввести общую макроскопич. характеристику систем, находящихся в равновесии — темп-ру, одииа-ковую для любой части равновесной системы.  [c.162]


Смотреть страницы где упоминается термин Общее условие термодинамического равновесия термодинамических систем : [c.186]    [c.108]    [c.121]    [c.89]    [c.146]    [c.258]    [c.94]    [c.285]   
Смотреть главы в:

Термодинамика  -> Общее условие термодинамического равновесия термодинамических систем



ПОИСК



Общие условия

Общие условия равновесия для различных случаев сопряжения термодинамической системы с окружающей средой

Общие условия равновесия термодинамической системы

Общие условия равновесия термодинамической системы

Общие условия равновесия фаз

Общие условия термодинамического равновесия

Равновесие системы тел

Равновесие термодинамическо

Равновесие термодинамическое

Равновесие термодинамической системы

Равновесие условие равновесия

ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ Общие условия равновесия термодинамической системы

ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ Общие условия равновесия термодинамической системы

Термодинамическая система

Условие равновесия системы пар

Условия равновесия

Условия равновесия и устойчивости термодинамических систем Общие условия термодинамического равновесия и устойчивости

Условия равновесия термодинамических систем

Условия термодинамического равновесия. Равновесие 6- 1. Общие условия равновесия термодинамической системы



© 2025 Mash-xxl.info Реклама на сайте