Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жаропрочные Термическая обработка

На рис. 3.5 изображена обобщенная параметрическая диаграмма другой партии металла той же марки стали с иными характеристиками жаропрочности. Термическая обработка проведена по режиму нормализация 1 ч при 980 °С, отпуск 3 ч при 740 °С. Структура металла этой партии состоит из зерен феррита и сорбита отпуска.  [c.77]

Итак, жаропрочные свойства в первую очередь определяются природой основного компонента сплава, затем его легированием и, наконец, режимами предшествовавшей термической обработки, приводящей сплав в то или иное структурное состояние. Как видно из рис. 340, полосы жаропрочности  [c.456]


Термическая обработка сплава нимоник, приводящая его в структурное состояние с максимальной жаропрочностью, заключается в воздушной закалке с 1100—1200°С и отпуске (старении) при 700—750°С в течение 10—16 ч. Максимальная жаропрочность соответствует однородной крупнозернистой структуре и однородным, равномерно распределенным дисперсным образованиям -фазы.  [c.476]

Термическая обработка жаропрочны.х кованых сплавов (АК2, АК4) заключается в закалке с 510—520°С с последующим искусственным старением в течение 5— J0 ч при 100 -180°С.  [c.595]

К деформируемым алюминиевым сплавам, упрочняемым термической обработкой, относятся сплавы системы А1—Си—Mg с добавками некоторых элементов (дуралюмины, ковочные сплавы), а также высокопрочные и жаропрочные сплавы сложного химического состава. Дуралюмины (Д16—Д18) содержат 3,8—4,8 % Си, 0,4— 1,8 % Mg, а также 0,4—0,9 % Мп, который повышает коррозионную стойкость сплавов. После термической обработки (закалка и естественное старение) эти сплавы имеют высокую прочность и удлинение. Ковочные сплавы (АК6—АК8) содержат 1,8—4,8 % Си,  [c.17]

Деформируемые магниевые сплавы (МА) содержат до 2 % Мп, до 5 % А1, десятые доли процента церия, например сплавы МА2, МА8, не упрочняемые термической обработкой высокопрочные сплавы — до 9 % А1 и 0,5 % Мп (сплав МА5). Жаропрочные магниевые сплавы содержат добавки циркония, никеля и др.  [c.18]

Химико - термическая обработка металлических деталей применяется с целью улучшить физико- химические и механические свойства деталей — повысить их жаропрочность, износоустойчивость и т. д. путем изменения химического состава поверхностного слоя металла, который искусственно насыщается азотом (процесс носит название азотирования), алюминием (алитирование), углеродом и азотом одновременно с последующей закалкой (цианирование) и некоторыми другими элементами. Сюда же иногда относят широко распространенный процесс термической обработки — насыщение низкоуглеродистой стали углеродом с последующей закалкой (цементация).  [c.27]

Наиболее распространенным и практически важным видом химической коррозии металлов является газовая коррозия — коррозия металлов в газах при высоких температурах. Газовая коррозия металлов имеет место при работе многих металлических деталей и аппаратов (металлической арматуры нагревательных печей, двигателей внутреннего сгорания, газовых турбин, аппаратов синтеза аммиака и др.) и при проведении многочисленных процессов обработки металлов при высоких температурах (при нагреве перед прокаткой, ковкой, штамповкой, при термической обработке и др.). Поведение металлов при высоких температурах имеет большое практическое значение и может быть описано с помош,ью двух важных характеристик — жаростойкости и жаропрочности.  [c.16]


Для повышения прочности, коррозийной стойкости и жаропрочности применяют специальные виды термической и химико-термической обработки, а также нанесение гальванических и других покрытий.  [c.44]

Жаропрочность сталей и сплавов, характеризуемая и о , зависит от природы и свойств твердого раствора основы температур плавления, рекристаллизации и атомных связей, соответствующих определенному типу кристаллической решетки основы легирующих элементов термической обработки величины зерна и характера обработки поверхности деталей.  [c.201]

Влияние термической обработки на жаропрочность сплавов происходит в результате дисперсионного твердения. Дисперсионное твердение связано со старением пересыщенных твердых растворов, сопровождающимся выделением мелкодисперсных включений упрочняющих фаз (карбидов, нитридов). Эти упрочняющие фазы присутствуют как в виде раздробленных крупных частиц по границам зерен, так и в виде равномерно рассеянных внутри зерен мельчайших частичек (рис. 13.5), повышающих сопротивление пластической деформации при высоких температурах, т. е. повышающих жаропрочность.  [c.202]

Упрочнение жаропрочных аустенитных сталей осуществляется в результате дисперсионного твердения. Для этого они подвергаются термической обработке, состоящей из закалки на аустенит и последующего длительного старения при 700—750° С.  [c.210]

Теплостойкие ферритные стали уступают аустенитным по жаропрочности, жаростойкости и свариваемости. Однако они менее трудоемки при обработке давлением и резанием, а термическая обработка их менее сложна. Кроме того, они обладают лучшими физическими свойствами (коэффициентом теплового расширения и теплопроводностью), что имеет важное значение при изготовлении ряда деталей, работающих при повышенных температурах.  [c.211]

Характерной особенностью аустенитных сталей является стабильность структуры, упрочненной дисперсными выделениями различных фаз при высокой температуре (рис. 13.11). Такая структура большинства аустенитных жаропрочных сталей достигается специальной термической обработкой.  [c.211]

Упрочнение жаропрочных сплавов на основе N1 является результатом дисперсионного твердения после термической обработки (закалки для получения однородного твердого раствора легирующих элементов в N1 и последующего длительного старения при высоких температурах 700—800° С) (рис. 13.14).  [c.215]

Жаропрочные малоуглеродистые стали на основе 2-12% хрома благодаря сравнительно низкой стоимости, высокой теплопроводности, малого температурного коэффициента линейного расширения и хорошей релаксационной способности, возможности регулирования механических свойств в широких пределах посредством термической обработки и относительно высокой коррозионно-механической стойкости являются наиболее приемлемыми и отвечают эксплуатационным требованиям, предъявляемым к конструктивным элементам технологических установок нефтеперерабатывающих и нефтехимических заводов. Повышение содержания хрома и дополнительное легирование карбидообразующими присадками оказывают положительное влияние на коррозионную стойкость этих сталей в горячих средах основных процессов переработки нефти, коррозионная активность которых прежде  [c.94]

В практике пластической деформации и последующей термической обработки многих важных сплавов сложного состава (жаропрочных на никелевой и железной основе, алюминиевых и др.) часто встречаются случаи образования зерен аномально больших размеров, превышающих размеры исходных зерен в десятки и сот-  [c.387]

После термической обработки предел прочности сплава МЛ 11 повышается на 2—3 кГ/мм , но его жаропрочность снижается.  [c.155]

В книге обобщены экспериментальные исследования по влиянию различных видов комбинированного термомеханического воздействия на механические свойства металлов и сплавов (статическая и циклическая прочность, жаропрочность). Природа упрочнения металлов при термомеханической и механико-термической обработках проанализирована на основе структурно-энергетического подхода к факторам, вызывающим повыщение прочности.  [c.2]


Для повышения жаропрочных свойств применяется так называемая механико-термическая обработка (МТО), которая, в отличие от ТМО, не связана с полиморфным превращением наклепанного материала. МТО заключается в создании в материале полигональной структуры путем дефорМ Ирования и последующей стабилизации полученного структурного состояния при температурах, не превыщающих температуру начала рекристаллизации.  [c.10]

Результаты рассмотренных выше опытов послужили основой для разработки метода повышения жаропрочных свойств широкого круга металлов и сплавов путем механико-термической обработки. Этот метод заключается в следующем [56]. После стандартной термической обработки металлы и сплавы подвергают дополнительному деформированию (растяжению, прокатке и др.) до критической степени деформации, составляющей 0,2—3%, при температуре, не превышающей температуры начала рекристаллизации, а затем выдерживают при этой температуре в течение 20—50 час. без нагрузки.  [c.32]

Исследованиями И. А. Одинга и П. В. Зубарева [59] установлено, что азотирование малоуглеродистой стали после МТО способствует дальнейшему повышению жаропрочных свойств механико-химико-термическая обработка). Это повышение, по-видимому, вызывается упрочнением полигональных границ в результате насыщения их чужеродными атомами в процессе азотирования [59].  [c.33]

Сталь ЭЙ725 применяют для изготовления корпусов турбин и направляющих лопаток, работающих при 750° С. Сталь относится к группе дисперсионно-тверде-ющнх повышенной жаропрочности. Термическая обработка состоит из закалки и старения, Сталь обладает достаточно высокой жаропрочностью при температурах до 700—750° С при длительных сроках службы (см. рис. 1, 2, 3). В процессе длительных испытаний при 700—800° С имеет место некоторое уменьшение ударной вязкости стали с 10 до 6 кГм1см [24, 28].  [c.175]

Благодаря наличию Си и Мп фазовый состав сплава АЛЗ в литом состоянии представляет собой а-твердый раствор + Si + Mn2Si2 + AlMnFe, а при медленном охлаждении -может образовываться фаза W (AlxMg6Si4 u4), обеспечивающая высокую жаропрочность. Термическая обработка в основном производится по трем режимам Т1, Т2 и Т5. Режим Т1 применяют для повышения твердости литых деталей, а режимы Т2 и Т5 — для деталей, работающих при высоких температурах.  [c.182]

Аустенитные жаропрочные стали обладают рядом общих свойств — высокой жаропрочностью и окалиностойкостьк>, большой пластичностью, хорошей свариваемостью, большим коэффициентом линейного расширения. Тем не менее по сравнению с перлитными и мартенситными сталями они менее технологичны обработка давлением резанием этих сплавов затруднена сварной шов обладает повышенной хрупкостью полученное вследствие перегрева крупнозернистое строение не может быть исправлено термической обработкой, так как в этих сталях отсутствует фазовая перекристаллизация. В интервале 550—600°С эти стали часто охрупчиваются из-за выделения по границам зерна различных фаз.  [c.470]

Конечно, цель такой термической обработки — повышение жаропрочности аустенитные стали второй группы обладают жаропрочностью более высокой, чем гомогенные аустенитные стали, что объясняется тонким распределением второй фазы, однако это является преимуществом только при кратковременных сроках службы при длительных сроках службы (t>100 ч) избыточная упрочняющая фаза скоагулирует, и тогда гомогенные сплавы превосходят по жаропрочности дисперсионно твердеющие.  [c.471]

Кроме высоких коррозионных свойств, снлавы хастеллой обладают и высокими механическими свойствами (аа>90 кгс/мм ,. СТо,2>40 кгс/мм ) при высокой пластичности, что делает их ценным конструкционным материалом. Ешс более высокие механические свойства (Ствг 120 кгс/мм ) можно получить термической обработкой, аналогично той, которую применяют для ппкелсвых жаропрочных сплавов закалка+старение при 800°С, Однако ма -симал1,ное упрочнение соответствует минимуму коррозионной стойкости, поэтому упрочняющая термическая обработка рекомендуется не вссгда.  [c.498]

Для достижения высокой жаропрочности аустенитные стали с карбидным и интерметаллидным упрочнением подвергают термической обработке, которая состоит из двух 1юследовательных операций  [c.290]

Состав некоторых аустенитиых жаропрочных сталей, упрочняемых термической обработкой приведен в табл. 12.  [c.291]

Оаль 10XI1M23T3MP, содержащая несколько болыпе никеля и добавочно легированная молибденом, имеет лучшую жаропрочность при 700—750 С по сравнению со сталью 10Х11Н20ТЗР. Режим термической обработки первой из них для получения максимальной жаропрочности закалка с 1100—1130°С на воздухе (при крупных сечениях в масле) и двойное старение при 750—785 °С, 16 ч и при 600 -650 С, 10-16 ч.  [c.293]

Термическая обработка аустенитных жаропрочных сталей основана на процессах старения пересыщенных твердых растворов в связи с выделением карбидов, карбоиитридов и интерметаллических соединений.  [c.211]

Алюминиевые бронзы обладают высокими механическими свойствами, повышенной жаропрочностью и антикоррозионной стойкостью. Упрочняющая термическая обработка состоит из закалки с 850— 900° С в воде и последующего отпуска при 400—600°С в течение 1,5 ч. На рис. 16.12 показана микроструктура бронзы Бр.АЖМц10-3-1,5, состоящая из зерен а-кристаллов (светлая составляющая) и а-МЗ-эвтек-тоида (темная составляющая).  [c.299]

С участием научных сотрудников центра разработаны уник ип.ные технологии ремонтной сварки нефтепродуктопроводов и колонной аппаратуры под рабочим давлением способами ручной электродуговой и полуавтоматической сварки в среде углекислого газа. Впервые в отечественной практике нефтеперерабатывающих предприятий внедрена технология объемной термической обработки крупногабаритных змеевиков трубчатых печей из жаропрочных хромомолибденовых сталей со значительным экономическим эффектом. Проводятся комплексные исследованм по обеспечению конструктивной прочности нефтегазохимического оборудования. Центром совместно с АООТ ВНИИнефтемаш разработаны и введены в действие Программа обследования технического состояния сосудов и аппаратов технологических установок нефтеперерабатывающих и химических производств , Методика оценки технического состояния и определения срока эксплуатации трубчатых печей нефтеперерабатывающих и нефтехимических производств , Программа обследования технического состояния хранилищ жидкого аммиака .  [c.409]


Использование кобальта в качестве основы жаропрочных, прецизионных и магнитных сплавов связано с тем, что со многими элементами (Г е, Ni, Сг, Мо и др.) он образует широкие области твердых растворов. (.Снижение растворимости легирующих элементов в твердом растворе при понижении температуры приводит к образованиро химических соединений и при соответствующей термической обработке позволяет получать кобалр.товые сплавы с высокодисперсной гетерогенной структурой.  [c.37]

Карбиды титана, ниобия и тантала (Ti , Nb , ТаС, Тз2С) являются наиболее тугоплавкими составляющими и способствуют образованию дисперсных фаз. Таким образом, путем рационального режима термической обработки возможно значительно повысить жаропрочность свойств рабочих лопаток турбин авиационных двигателей.  [c.76]

Поопе термической обработки вольфрамистые стали обладают повышенной твердостью, прочностью и высокой ударной вязкостью. Вольфрам добавляют к конструкционным хромоникелевым и жаропрочным сталям, а также он является основным легирующим элементом в HH TpyMeHTiLibHHx И быстрорежущих сталях Р18 (W= 18%).  [c.96]

В Производстве каропрочных сплавов электропечи соп1ютивле-ния используют для изготовления модельных масс и для проведения термической обработки жаропрочных отливок.  [c.242]

Жаропрочные сплавы - двухфазные (а +/3)-сплавы ВТЗ-1, ВТ8, ВТ9, ВТ 18 и ВТ25. Эти сплавы легированы молибденом, цирконием, кремнием и вольфрамом, предел прочности в отожженном состоянии выше 1100 МПа, что не требует упрочняющей термической обработки. Эти сплавы имеют более высокую прочность при 400 - 600°С и применяются для производства штампованных заготовок.  [c.294]

Дефекты жаропрочных отливок, такие, как горячие трещины, шлаковые включения, газовые раковины, неспаи, усадочные раковины, образуются при металлургических процессах (при плавке и заливке металла, кристаллизации отливок, термической обработке и других мет шлургических операциях).  [c.368]

Из этого следует, что скорость ползучести будет тем больше, чем быстрее разупрочняется металл под действием рекристаллизационных процессов и чем ниже прочность при кратковременных испытаниях. Поскольку скорость ползучести зависит от состава и строения металла, то стремятся уменьшить ее соответствующим легированием и термической обработкой Чем выше температуфа плавления металла, тем выше и температура его ре -кристаллизации Поэтому для изготовления жаропрочных деталей применяют металлы с высокой температурой плавления. Как правило, максимальная рабочая температура не может превышать значений, равных (0,7...0,8) Тпл.  [c.101]

Стали перлитного класса содержат до 0,16% С и молибдена до 0,7%, который увеличивает температуру рекристаплизации феррита и тем са.мым повышает жаропрочность. Аналогично, но слабее действует хром. Присадка ванадия измельчает зерно, а также повышает жаропрочность Обычный режим термической обработки - закалка в масле или нормализация при температурах 950.. 1030 с и отпуск при 720. 750 С (Ас1 = 760 С). Предельная рабочая температура 550.. 580 С. Структура сталей после охлаждения на воздухе перлит и карбиды МзС. Область применения сталей приведена в табл 13.  [c.102]

Бериллиевые бронзы. Содержат 2...2,5% Ве. Эти сплавы упрочняются термической обработкой. Предельная растворимость бериллия в меди при 866 составляет 2,7%, при 600 °С - 1,5%, а при 300 °С всего 0,2%. Закалка проводится при 780 С в воде и старение при 300 "С в течение Зч. Сплав упрочняется за счет выделения дисперсных частиц у-фазы СпВе, что приводит к резкому повышению прочности до 1250 МПа при 5 = 3...5%. Бронзы БрБ2, БрБНТ1,9 и БрБНТ1,7 имеют высокую прочность, упругость, коррозионную стойкость, жаропрочность, немагнитны, искробезопасны (искра не образуется при размыкании электрических контактов). Применяются для мембран, пружин, электрических контактов.  [c.117]

Описана теория легирования стали. Показано влияние легирующих элементов на структуру и свойства стали. Приведены технологические особенности обработки легированных сталей. Рассмотрены принципы легирования и термической обработки легированных сталей различного назначения конструкционных, коррозионностойких, теплостойких, жаропрочных, окалиностонких и инструментальных.  [c.26]

Мехаыико-термическая обработка как средство повышения жаропрочности металлов и сплавов  [c.25]


Смотреть страницы где упоминается термин Жаропрочные Термическая обработка : [c.460]    [c.466]    [c.468]    [c.298]    [c.632]    [c.639]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.119 , c.121 , c.181 , c.183 , c.185 , c.187 , c.189 , c.191 , c.195 , c.200 , c.201 ]



ПОИСК



12%-ные сложнолегированные жаропрочные 131—138 —Азотируемый слой — Глубина и твердость Марки и назначение 135—137 — Механические свойства — Зависимость литейные 202—206 — Марки и назначение 202, 204 , 206 •—Механические свойства 203—205 — Пределы прочности длительной и усталости 204, 205 — Термическая обработка 203, 204 — Химический состав

12%-ные сложнолегированные жаропрочные 131—138 —Азотируемый слой — Глубина и твердость Марки и назначение 135—137 — Механические свойства — Зависимость прочности 134, 137 — Пределы ползучести 135, 137 —Термическая обработка

336 — Сварка газовая жаропрочные — Термическая обработка — Режимы

Влияние легирования и термической обработки на свойства и структуру сварных соединений из жаропрочных титановых сплавов

Влияние на обрабатываемость резанием жаропрочных сталей и сплавов их химического состава, физико-механических свойств и термической обработки

Влияние термической обработки на жаропрочность сварных соединений

Жаропрочность

Жаропрочные КЭП

Жаропрочные сплавы Термическая обработка и химический состав

Жаропрочные стали термическая обработка

Механико-термическая обработка как средство повышения жаропрочности металлов и сплавов

Обработка термическая конструкций из жаропрочных сталей

Пайка сталей и сплавов жаропрочных — Защитные атмосферы 240 — Прочность в зависимости от термической обработки и от размера зазора 235, 236 — Припои

Регенерация структуры и свойств перлитных жаропрочных сталей путем восстановительной термической обработки

Режимы термической обработки кислотостойких, окалиностойких, жаропрочных, магнитных и других сталей

Сплавы жаропрочные деформируемые на кобальтовой основе состав, термическая обработка, свойства

Сплавы жаропрочные литые на кобальтовой основе молибдена состав, термическая обработка, свойства

Сплавы жаропрочные литые на кобальтовой состав, термическая обработка и свойств

Сплавы жаропрочные литые на кобальтовой хрома состав, термическая обработка, свойства

Сплавы жаропрочные литые нимоник состав, термическая обработка, свойства

Сплавы жаропрочные литые рефректаллой состав, термическая обработка и свойства

Сплавы жаропрочные литые титана состав, термическая обработка, свойства

Сплавы жаропрочные литые хастеллой состав, термическая обработка и свойства

Стали для клапанов и жаропрочные стали Основные обозначения, химический состав, механические свойства, режимы термической обработки и применение сталей

Стали жаропрочные — Классификация Назначение, обработка термическая

Стали жаропрочные — Классификация обозначения 250, 251 Назначение 254 — Обработка термическая

Термическая обработка деталей машин, изготовляемых из высоколегированной нержавеющей и жаропрочной стали

Термическая обработка жаропрочных никелевых сплавов

Термическая обработка сплавов жаропрочных 119—121 —Применение защитных атмосфер

Термическая обработка сплавов жаропрочных 119—121 —Применение защитных атмосфер свойствами

Термическая обработка сплавов жаропрочных жаропрочных на никелевой основе

Термическая обработка сплавов жаропрочных жаропрочных на никелевой основе деформируемых

Термическая обработка сплавов жаропрочных коррозионностойких литейных

Термическая обработка сплавов жаропрочных нержавеющих литейных

Термическая обработка сплавов жаропрочных окалиностойких на никелевой основе

Термическая обработка сплавов жаропрочных со специальными магнитными

Термическая обработка сталей высокомарганцовистых жаропрочных 119—121 —Применение защитных атмосфер

Термическая обработка сталей высокомарганцовистых жаропрочных и теплоустойчивых

Термическая обработка сталей высокомарганцовистых жаропрочных хромоникелевы

Термическая обработка сталей коррозионно-стойких, жаростойких и жаропрочных



© 2025 Mash-xxl.info Реклама на сайте