Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные понятия. Общие теоремы

Основные понятия. Общие теоремы  [c.93]

ОСНОВНЫЕ ПОНЯТИЯ. ОБЩИЕ ТЕОРЕМЫ О5  [c.95]

Изложим кратко основные положения аппарата ДФК [18, 24]. В его основе лежит общая теорема Винера — Хинчина, согласно которой спектр мощности стационарного случайного процесса является фурье-образом его функции корреляции. Уточним фигурирующие в этой теореме понятия применительно к спектроскопии.  [c.147]


Основными понятиями считаются сила, тело, пространство (путь) и время. Производным от этих понятий называется понятие скорости, которая определяется либо как отношение силы к массе , либо как отношение пути ко времени. Все общие теоремы механики, лежащие в ее основе, посвящены установлению отношений между этими пятью величинами. Введя обозначения для величин (/ — сила, т — масса или количество вещества в теле, е — пройденный путь, t — за-  [c.226]

Общие теоремы позволяют ввести ряд новых физических понятий, таких, как энергия, импульс, работа, что позволяет полнее раскрыть закономерности механического движения. Практическая ценность общих теорем состоит в возможности установления признаков, на основании которых сразу можно заключить о существовании отдельных первых интегралов движения. Постоянство же соответствующих величин имеет глубокое происхождение, связанное с основными свойствами пространства и времени оно отражено в законах сохранения.  [c.110]

В этом состоит основное значение понятия о работе и теоремы об изменении кинетической энергии или уравнений живых сил. Уравнение живых сил было известно И. Бернулли, но его глубокое физическое содержание было разъяснено лишь в середине XIX в. вместе с установлением общего закона сохранения энергии. Тогда  [c.384]

Статистическая гидромеханика широко использует результаты и методы классической гидромеханики и теории вероятностей. Поэтому знание указанных двух дисциплин сильно облегчит знакомство с настоящей книгой. Тем не менее мы надеемся, что наша книга будет доступной и для лиц, имеющих лишь общую математическую и физическую подготовку. Имея з виду таких читателей, мы включили в первые два раздела основные сведения из классической гидромеханики (начиная с уравнений неразрывности и движения) и из теории вероятностей (начиная с самого понятия вероятности). Уже в этих главах, как и во всех дальнейших, мы старались уделять основное внимание принципиальным вопросам, не задерживаясь на технических деталях. С этим стремлением связано то, что мы нигде не излагаем методов решения встретившихся дифференциальных уравнений или других стандартных математических задач, а сразу приводим ответ (который иногда совсем нелегко найти). В то же время мы сравнительно подробно останавливаемся на некоторых недостаточно широко известных, но важных математических вопросах, традиционно опускаемых во всех книгах и статьях, предназначенных для механиков или физиков (типа, например, вопроса об эргодических теоремах или спектральных разложениях случайных полей) этим объясняется то, что целых два раздела книги посвящены математической теории случайных полей.  [c.25]


По аналогии с общей теорией пластичности, для жесткопластических оболочек можпо ввести понятие коэффициента предельно нагрузки, а также понятия кинематического и статического коэффициентов. Для них справедлива основная теорема, доказанная в 4.  [c.160]

Теория групп занимается изучением весьма общих математических понятий. Здесь же мы излагаем ее исключительно для приложений к группам симметрии и поэтому будем избегать чрезмерной абстрактности, иллюстрируя каждый шаг на группах симметрии. Приведем сначала основные определения и элементарные теоремы.  [c.29]

В этой главе рассматривается разложение периодических функций в ряды Фурье, ведущее к более общему представлению преобразования Фурье-функций. Обсуждаются основные операции, необходимые при системном анализе (умножение, свертка, дифференцирование и интегрирование) как во временной, так и частотной областях. С помощью вводимых понятий и системы обозначений формируется теорема о выборке. И, наконец, обсуждается аналитический сигнал в связи с комплексным представлением вещественных сигналов и понятием огибающей.  [c.133]

Понятие импульса материальной точки является одним из наиболее общих, универсальных понятий физической науки. Оно используется не только в механике, но и во всех других разделах физики. Поэтому знание закона изменения импульса оказывается весьма существенным. В механике как определение импульса, так и закон его изменения вытекают из законов Ньютона. Теорема об изменении импульса материальной точки является результатом простейшего тождественного преобразования основного уравнения механики. Ввиду постоянства массы материальной точки основное уравнение (6.1) можно написать в следующем виде  [c.110]

Хотя нас в основном интересуют нелинейные операторы в это определение и все теоремы этого пункта справедливы для произвольных банаховых пространств. Отметим также, что понятие сжимающего отображения легко распространить на случай общих метрических пространств. Пусть X в. — метрические пространства с метриками й и р (У , )  [c.298]

Л. В. Ассур еще раз вернулся к вопросу об аналогах ускорений в своей второй работе на эту тему Основные свойства аналогов ускорений в аналитическом изложении . Повторив все рассуждения, выполненные ранее графически в аналитической форме, Ассур приходит к заключению, что нонятие аналогов есть общее понятие, из которого понятие ускорения вытекает как частный случай. Поэтому из всякой теоремы, выведенной для аналогов ускорений, следует соответствующая теорема для ускорений. Однако метод нелегкий, и автор пока не видит возможности упростить его. Далее он указывает на связь, установленную им, между аналогами ускорений, ускорениями и частными производными второго порядка, а также между скоростями и частными производными первого порядка. Отсюда следует, что аналоги ускорений подобно скоростям и ускорениям являются понятием кинематическим.  [c.56]

Работа состоит из шести глав. Первая глава посвящена разбору возможностей, предоставляемых классической механикой для решения названной основной задачи, и критике относящихся сюда работ, основанных на классической механике. Вторая глава посвящена аналогичному рассмотрению в квантовой механике. В третьей главе разбирается вопрос об описании немаксимально полных опытов, в частности об условиях применимости понятия статистического оператора матрицы плотности). В четвертой главе выводятся некоторые ограничения, которые накладываются на возможности измерений, производимых над макроскопическими системами, условием сохранения их заданной макроскопической характеристики. Значительная часть вопросов, затронутых в третьей и четвертой главах, заключается в получении свойств релаксации, Я-теоремы и т. д.— утверждений макроскопических, т. е., казалось бы, не связанных с вопросами о возможностях измерения. Поэтому, чтобы при решении поставленной в работе задачи не казалось странным возникновение этих вопросов, отметим сразу же, что самая суть поставленной задачи заключается в выяснении связи макроскопических утверждений с микромеханикой, а уравнениям последней можно, как известно, придать физический смысл лишь в связи с возможностями измерений. Пятая глава посвящена общим понятиям о релаксации физических систем, об j/У-теореме и о средних во времени значениях физических величин. В шестой главе выясняется связь между существованием релаксации и определенными свойствами гамильтониана системы.  [c.16]


В своем трактате Общие принципы движения жидкостей (1755) Эйлер впервые вывел основную систему уравнений движения идеальной жидкости, положив этим начало аналитической механике сплошной среды. Гидродинамика обязана Эйлеру расширением понятия давления на случай движущейся жидкости. Стоит вспомнить слова Эйлера относительно того, что жидкость до достижения тела изменяет свое направление и скорость так, что, подходя к телу, протекает мимо него вдоль его поверхности и не прилагает к телу никакой другой силы, кроме давления, соответствующего отдельным точкам соприкосновения . В этих словах Эйлера, в противовес ньютонианским взглядам на ударную природу взаимодействия твердого тела с набегающей иа него жидкостью, выдвигается новое для того времени представление об обтекании тела жидкостью. Давление определяется не наклоном поверхности в данной точке к направлению набегающего потока, а движением жидкости вблизи этой точки поверхности. Эйлеру принадлежит первый вывод уравнения сплошности жидкости (в частном случае движения жидкости по трубе это уравнение в гидравлической трактовке было дано задолго до Эйлера в 1628 г. учеником Галилея Кастелли), своеобразная и ныне общепринятая формулировка теоремы об изменении количества движения применительно к жидким и газообразным средам, вывод турбинного уравнения, создание теории реактивного колеса Сег-нера и многое другое.  [c.20]

Как указывает подзаголовок этой книги, основным методом изложения избран генетический подход. Авторы стремятся объяснить генезис основных идей и понятий теории динамических систем с ударными взаимодействиями, а также продемонстрировать их естественность и эффективность. Ключевым моментом являются найденные недавно теоремы о предельном переходе, обосновывающие различные математические модели теории удара. Их суть заключается в следующем. Односторонняя связь, наложенная на систему, заменяется полем упругих и диссипативных сил. Затем коэффициенты упругости и вязкости некоторым согласованным способом устремляются к бесконечности. Доказывается, что движение такой свободной системы с фиксированными начальными данными стремится на каждом конечном промежутке времени к движению с ударами. При отсутствии диссипации энергии получаем упругий удар, а при надлежащем выборе диссипативной функции Рэлея (задающей структуру сил трения) можно получить в пределе модель Ньютона и более общий удар с вязким трением. Идея реализации связей с помощью предельного перехода в полных уравнениях динамики восходит к работам Клейна, Пранд-тля, Каратеодори и Куранта. Эти результаты позволяют, в частности, решить ряд новых задач об-устойчивости периодических движений с ударами, а также исследовать эволюцию биллиардных систем при неупругих столкновениях, когда имеется слабая диссипация энергии.  [c.4]

Используем общие определения параграфа 2 применительно к векторному соленоидальному полю завихренности и. Тогда из общих свойств векторных полей на основании теоремы Стокса (1.8) следует, что циркуляция Г по любому замкнутому стягиваемому контуру равна алгебраической сумме интенсивностей к всех вихревых трубок, пересекающих поверхность, ограниченную этим контуром. Это справедливо и в частном случае вихревых трубок бесконечно малого поперечного сечения — вихревых нитей. Обратим внимание на то, что понятие вихревая нить и вихревая линия отличны. Вихревая нить — это особая линия в распределении поля завихренности, полностью определяемая значением интенсивности к. В свою очередь — вихревая линия — это линия, касательная к которой в каждый момент времени совпадает с направлением мгновенной оси вращения жидких элементов. Применительно к описанию вихревого движения термины вихревые линии и нити ввел Г. Гельмгольц в (135). Он сформулировал основные свойства интегралов гидродинамических уравнений второго класса (так были названы течения, содержащие отличную от нуля завихренность в отличие от полностью потенциальных течений, весьма детально к тому времени изученных). Сформулированные в виде трех положений, эти свойства в дальнейшем названы законами или теоремами Гельмгольца для в 1хревого движения. Более столетия они встречаются в различных интерпретациях практически во всех учебниках по механике жидкости. Приведем эти законы в формулировках Г. Гельмгольца  [c.34]

В разд. 2.3 даны общие определения конечных элементов и пространств конечных элементов и приводится обсуждение их различных свойств. Особенно важны понятие аффинного сежйства конечных элементов (когда все конечные элементы семейства могут быть получены как образы при аффипном отображении одного и того же исходного конечного элемента) и понятие оператора Рк-интерполяции (основная зависимость между этими двумя понятиями устанавливается в теореме 2.3.1). Оператор Р --интерполяции и соответствующий ему общий оператор Х -интерполяции играют фундаментальную роль в развиваемой в следующей главе теории интерполяции в простряпствах Соболева. Будет также описана методика постановки краевых условий на функции из пространств конечных элементов.  [c.47]


Смотреть страницы где упоминается термин Основные понятия. Общие теоремы : [c.483]    [c.151]    [c.2]    [c.14]    [c.178]    [c.214]    [c.33]    [c.100]    [c.10]   
Смотреть главы в:

Теоретическая механика  -> Основные понятия. Общие теоремы



ПОИСК



Общие понятия

Общие теоремы

Основные понятия и теоремы

Основные теоремы

Понятие Теоремы



© 2025 Mash-xxl.info Реклама на сайте