Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость линейных систем с периодическими коэффициентами

Обстоятельное изложение теории свободных колебаний линейных систем с переменными параметрами содержится в монографии Ф. А. Михайлова [47]. Суш ественные результаты получены автором по анализу устойчивости линейных систем с периодически изменяющимися коэффициент тами.  [c.10]

Устойчивость линейных гамильтоновых систем с периодическими коэффициентами. Пусть в системе (3) матрица Н является непрерывной 2тг-периодической по вещественной симметрической матрицей. Задача об устойчивости линейных гамильтоновых систем обладает рядом специфических особенностей по сравнению с задачей об устойчивости общих линейных систем, рассмотренных в предыдущем пункте. Эти особенности вытекают из теоремы Ляпунова-Пуанкаре о характеристическом уравнении гамильтоновых систем с периодическими коэффициентами.  [c.547]


ЛИНЕЙНЫЕ УРАВНЕНИЯ С ПЕРИОДИЧЕСКИМИ КОЭФФИЦИЕНТАМИ И ЗАДАЧА ОБ УСТОЙЧИВОСТИ ПЕРИОДИЧЕСКИХ РЕШЕНИЙ НЕЛИНЕЙНЫХ СИСТЕМ. К линейным уравнениям с периодическими коэффициентами приводят прежде всего задачи об устойчивости периодических решений нелинейных систем, рассматриваемые в первом приближении. Так, например, для исследования устойчивости известного периодического решения  [c.559]

Исследование устойчивости движения многих систем, встречающихся в различных технических задачах, часто сводится к анализу линейных дифференциальных уравнений с периодическими коэффициентами. В матричной форме эти уравнения могут быть записаны так (см. 5.2, формула (5,19а))  [c.231]

Аэроупругое поведение несущего винта или вертолета во многих случаях описывается линейными дифференциальными уравнениями с периодическими коэффициентами. Периодичность коэффициентов обусловлена воздействием аэродинамических сил при полете вперед, а также асимметрией, органически присущей несущему винту. Следовательно, необходимо иметь возможность оценить динамические характеристики периодических систем, в частности их собственные значения, определяющие устойчивость.  [c.340]

Отметим, наконец, что уравнения в вариациях для периодических решений широкого класса нелинейных систем также представляют собой линейные дифференциальные уравнения с периодическими коэффициентами, которые часто могут быть истолкованы как уравнения параметрических колебаний. Такая связь между проблемой устойчивости и проблемой параметрических колебаний, естественно, не является случайной наличие неустойчивости движения нелинейной (не обязательно параметрической )  [c.97]

Мы здесь будем заниматься механизмами неустойчивостей и исследованием устойчивости движения в малом , т.е. в рамках уравнений, полученных из исходных с помощью разложения в ряд вблизи интересующего нас решения всех нелинейных зависимостей и оставления лишь линейных членов (уже обсуждавшаяся процедура линеаризации). Наиболее важным является исследование устойчивости, во-первых, статического положения системы, т. е. состояния равновесия линеаризованной системы с постоянными коэффициентами, во-вторых, периодических движений системы, малые отклонения от которых описываются линеаризованными уравнениями с периодическими коэффициентами. Относительно же устойчивости линейных систем (а не их решений) дадим пока лишь не вполне строгое определение динамическая система, описываемая коэффициентом передачи Ж р) р = ш) и находящаяся под внешним воздействием V, называется устойчивой, если малое изменение внешнего воздействия приводит к малому изме-  [c.129]


Сформулированные выше утверждения относились к случаю, когда линейное приближение приводит к дифференциальным уравнениям с постоянными коэффициентами. Это типично для задач об устойчивости состояний равновесия или стационарного движения. В общем случае матрица 6 уравнений первого приближения зависит от 7. При этом нельзя утверждать, что из асимптотической устойчивости решений уравнений первого приближения следует устойчивость решений нелинейной системы. Ляпунов выделил класс так называемых правильных систем, для которых справедлив аналог теоремы об устойчивости по первому приближению. Среди этих систем - системы с переменными коэффициентами, которые являются ограниченными периодическими функциями времени с одинаковым вещественным периодом.  [c.460]

С теорией критических случаев устойчивости тесно связан вопрос о поведении динамических систем вблизи границ области устойчивости в пространстве параметров. Границей области устойчивости называется совокупность всех тех точек пространства параметров, в которых по крайней мере один из корней характеристического уравнения является критическим. Так, для линейной системы уравнений возмущенного движения с постоянными коэффициентами устойчивость может теряться либо когда по меньшей мере один из корней характеристического уравнения становится равным нулю, либо когда два корня становятся чисто мнимыми в этих случаях уничтожаются либо последний, либо предпоследний из определителей Гурвица. В первом случае уравнения возмущенного движения будут иметь новую последовательность равновесий, проходящую через отвечающую точку, а во втором — последовательность периодических движений (Н. Г. Четаев, 1946).  [c.60]

Детально изучены адиабатические инварианты линейных многочастотных систем [1641. Эта теория относится к линейным гамильтоновым системам с периодическими по времени коэффициентами, зависящими, кроме того, от плавно изменяющегося со временем параметра Я = Я(е/). Предполагается, что при каждом фиксированном Я система сильно устойчива, т. е. она устойчива и любое достаточно малое изменение коэффициентов не нарушает устойчивости. Все мультипликаторы сильно устойчивой системы лежат на единичной окружности и отличны от 1 (см., например, [61). Поэтому при изменении Я мультипликаторы перемещаются по верхней и нижней единичным полуокружностям, не переходя с одной полуокружности на другую .  [c.220]

Во второй — пятой главах рассмотрены задачи теории гамильтоновых систем и ее приложений. Вторая глава посвящена линейным гамильтоновым системам. Приводятся результаты Ляпунова об устойчивости линейных гамильтоновых систем с постоянными или периодическими коэффициентами. Для устойчивых систем в случае простых корней характеристического уравнения строятся конструктивные алгоритмы приведения системы к нормальным координатам. Тут же приводится теорема Ляпунова — Пуанкаре о характеристическом уравнении гамильтоновых систем и рассматривается задача о параметрическом резонансе в гамильтоновых системах, содержащих малые периодические возмущения. В последнем параграфе второй главы получены области параметрического резонанса в первом приближении по малому параметру и приведены необходимые расчетные формулы.  [c.11]

Критерий устойчивости вероятностного спектра линейных систем дифференциальных уравнений с рекуррентными коэффициентами и критерий почти приводимости систем с почти периодическими коэффициентами. Мат. сб., 1969, 78, № 2, 179—202  [c.108]

Одной из важнейших проблем динамики приводов с нелинейными характеристиками является исследование устойчивости периодических режимов. Выше были рассмотрены периодические режимы в приводах, описываемых системами дифференциальных уравнений с кусочно-постоянными коэффициентами. Исследуем устойчивость этих режимов, для чего рассмотрим систему линейных дифференциальных уравнений вида  [c.264]

Эта задача подробно изучена в работах А. М. Ляпунова, М. Г. Крейпэ, В. А. Якубовича, В. М. Старжинского, Р1. М. Гель-фанда и В. Б. Лидского, Ю. Мозера и др. Полученные результаты изложены в монографии [97], где приведена и обширная библиография по устойчивости линейных систем с периодическими коэффициентами. Здесь мы ограничимся рассмотрением задачи о параметрическом резонансе для тех частных случаев, которые типичны для рассматриваемых далее конкретных задач небесной механики. Будем предполагать, что функция Гамильтона Н, соответствующая системе (1.1), имеет вид  [c.43]


Для расширения области применения первого метода Ляпунова в том случае, когда коэффициенты линейной системы постоянны, а нелинейные члены не содержат времени, требовалось дополнить общие результаты Ляпунова исследованием особенных (критических) случаев. Ляпунову принадлежит анализ случая одного и двух нулевых корней (характеристического уравнения матрицы ) и двух чисто мнимых корней. Первые новые важные результаты были получены Г. В, Каменковым и И. Г. Малкиным Они в весьма широких предположениях провели анализ устойчивости при наличии двойного нулевого корня, затем нулевого корня любой кратности, нри наличии двух пар, затем любого числа мнимых корней (предполагается, что все остальные корни характеристического уравнения имеют отрицательные вещественные части). В тех же работах рассмотрены критические случаи для систем с периодическими коэффициентами в линейных членах и периодическими нелинейными членами (период предполагается одним и тем же для всех pgf и Zfe). Каменков и Малкин дополнили и в этом пункте результаты Ляпунова.  [c.130]

Вообгце говоря, для произвольных линейных систем с условнопериодическими коэффициентами приводимость может не иметь места. Однако, как показал Г.А. Красинский [77], уравнения в вариациях, соответствуюгцие условно-периодическим движениям гамильтоновых систем, построенным с номогцью метода А.Н. Колмогорова и его модификаций, всегда приводимы, причем матрица соответствуюгцей линейной замены переменных имеет условно-периодические коэффициенты, а сама замена будет канонической. Следовательно, в этом случае можно надеяться на успешный анализ устойчивости нелинейной системы методом нормальных форм Пуанкаре.  [c.124]

Ряд примеров такого рода рассмотрен в книгах Г. В. Бондаренко [7] и Т. Хаяси [70], в курсе С. П. Тимошенко [85], статье Н. Е. Кочина [100] и в фундаментальных работах В. В. Болотина [6] и А. С. Вольмира [11]. Здесь эти примеры не рассматриваются. Главная задача излагаемого краткого экскурса в область линейных уравнений с периодическими коэффициентами — построение критериев устойчивости периодических решений нелинейных систем.  [c.562]

Основное внимание в кпиге уделено наиболее эффективным методам исследования устойчивости движения — прямому методу Ляпунова и исследованию устойчивости по уравнениям первого приближения. Отдельные главы посвящены исследованию устойчивости дви>кения по структуре действующих сил, устойчивости движения неавтономных систем, в том числе систем, возмущенное движение которых описывается линейными дифференциальными уравиениями с периодическими коэффициентами.  [c.7]

Для получения критериев устойчивости таких систем кратко остановимся на некоторых общих вопросах теории линейных дифференциальных уравнений с периодическими коэффициентами, принадлежащей Флoкe(Floquet).  [c.232]

В.Н. Фомин [76] исследовал устойчивость линейной системы (1) с условно-периодическими коэффициентами в случае, когда она содержит малый параметр и при нулевом значении которого переходит в систему с постоянными коэффициентами. В [76] нри исследовании устойчивости применена комбинация метода усреднения и метода оценки характеристических чисел решений усредненных уравнений с номогцью некоторых квадратичных форм — функций Ляпунова и получены области неустойчивости, являющиеся аналогами областей на-эаметрического резонанса в случае периодической системы (1).  [c.124]

Это уравнение изучалось довольно интенсивно. Оно является частным случаем уравнения Хилла, которое в свою очередь является линейным дифференциальным уравнением с периодическими коэффициентами. Аналогичные уравнения появляются во многих задачах прикладной математики, в частности в задачах об устойчивости поперечной колонны, подверженной периодической продольной нагрузке об устойчивости периодических решений нелинейных консервативных систем о распространении электромагнитных волн в среде с периодической структурой о движении Луны, а также в задачах о возбуждении некоторых электрических систем.  [c.71]

О вынужденных колебаниях легко находится разлол<ив негармоническую внешнюю силу в гармонический спектр, можно свести задачу к предыдущей — определению амплитуд и фаз вынужденных колебаний, возникающих под действием гармонических составляющих спектра внешней силы. Именно то, что в линейных системах, описываемых дифференциальными уравнениями с постоянными коэффициентами и являющихся очень широко распространенным классом систем, имеют место как устойчивость формы гармонических колебаний, так и принцип суперпозиции, придает исключительный физический интерес математическому приему разложения периодической функции в спектр, т. е. именно в гармонический ряд, а не в ряд каких-либо других функци11.  [c.622]


Смотреть страницы где упоминается термин Устойчивость линейных систем с периодическими коэффициентами : [c.38]    [c.143]    [c.129]    [c.53]    [c.44]    [c.54]   
Смотреть главы в:

Введение в теорию устойчивости движения  -> Устойчивость линейных систем с периодическими коэффициентами



ПОИСК



Коэффициент линейный

Коэффициент устойчивости

Линейное устойчивое

Линейные системы с периодическими коэффициентами

Линейные уравнения с периодическими коэффициентами и задача об устойчивости периодических решений нелинейных систем

О линейных системах с периодическими коэффициента. 244. Устойчивость линейных гамильтоновых систем с периодическими коэффициентами

Периодическая система

Система Устойчивость

Система линейная

Система устойчивая

Системы с периодическими коэффициентами

Устойчивость линейная

Устойчивость линейной системы

Устойчивость линейных гамильтоновых систем с периодическими коэффициентами

Устойчивость линейных гамильтононых систем с периодическими коэффициентами



© 2025 Mash-xxl.info Реклама на сайте