Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптически анизотропные среды

Глава X ОПТИЧЕСКИ АНИЗОТРОПНЫЕ СРЕДЫ  [c.246]

Оптически анизотропия среды характеризуется различной по разным направлениям способностью среды реагировать на действие падающего света. Реакция эта состоит в смещении электрических зарядов под действием поля световой волны. Для оптически анизотропных сред величина смещения в поле данной напряженности зависит от направления, т. е. диэлектрическая проницаемость, а следовательно, и показатель преломления среды различны для разных направлений электрического вектора световой волны. Другими словами, показатель преломления, а следовательно, и скорость света зависят от направления распространения световой волны и плоскости ее поляризации. Поэтому для анизотропной среды волновая поверхность, т. е. поверхность, до которой распространяется за время t световое возбуждение, исходящее из точки L, отлична от сферической, характерной для изотропной среды, где скорость распространения V не зависит от направления.  [c.497]


Свет, проходящий через оптически анизотропную среду в направлении OiV, делится на две плоскополяризованные составляющие с колебаниями в плоскостях 0D и ОЕ. Длины полуосей 0D и ОЕ пропорциональны показателям преломления П] и П2 среды в этих двух направлениях.  [c.28]

Такой же метод рассмотрения можно провести и для оптически анизотропной среды (в частности, для прозрачных кристаллов, см. Оптическая анизотропия), в к-рой парциальные волны не являются сферами. В этом случае обыкновенному и необыкновенному лучам будут соответствовать разные конусы и излучение будет возникать под разными углами 0 к направлению распространения частицы, согласно соотношению (2). Условие (1) для оптически анизотропных сред формулируется несколько иначе. Во всех случаях осн. ф-лы теории хорошо согласуются с опытом.  [c.449]

Двойное лучепреломление. Это явление наблюдается в оптически анизотропных средах, таких, как слюда и исландский шпат. Слово двойное в названии явления указывает на два разных направления, по которым падающий луч может распространяться в таких средах в зависимости от направления его поляризации. Двойное лучепреломление характеризуется разностью показателей преломления  [c.63]

Известна также группа позиционно-чувствительных датчиков, использующих свойства оптических анизотропных сред. Принцип действия таких фотоприемников основан на том, что величина фазового сдвига световой волны, проходящей через анизотропный кристалл, зависит от угла, заключенного между направлением распространения световой волны и оптической осью анизотропной среды. Это позволяет по интерференционной картине, получившейся на выходе устройства, судить о величине смещения светового пятна. Такие устройства могут быть с успехом применены для центрирования объектов.  [c.40]

При изучении распространения света в анизотропной среде нами были введены четыре вспомогательных поверхности — лучевой эллипсоид и оптическая индикатриса, лучевая поверхность и поверхность нормалей. Если нам известна форма одной из этих поверхностей, то путем соответствующих преобразований можно определить форму любой другой. Отметим, что при помощи оптической индикатрисы удается особенно просто рассмотреть оптические свойства кристалла.  [c.258]

Оптические свойства анизотропной среды  [c.500]

При изучении распространения света в анизотропной среде обычно исходят из уравнений Максвелла. Электромагнитная теория света дает детальное описание всех явлений, наблюдаемых на опыте и связанных с естественной оптической анизотропией. Кроме того, эта теория может связать электрическую, а следовательно, и оптическую анизотропию с молекулярным строением вещества, т. е. с расположением атомов и молекул в кристаллической решетке.  [c.30]


Главный показатель преломления необыкновенного луча iig — отношение скорости электромагнитного излучения в вакууме к фазовой скорости необыкновенного луча в анизотропной среде в направлении, перпендикулярном оптической оси, в случае одноосной анизотропии или в направлении, перпендикулярном биссектрисе угла между оптическими осями, в случае двухосной анизотропии.  [c.188]

Показателем преломления необыкновенного луча Пе называют отношение скорости электромагнитного излучения в вакууме к фазовой скорости необыкновенного луча с длиной волны X в анизотропной среде. Если распространение необыкновенного луча рассматривается в направлении, перпендикулярном оптической оси анизотропной среды (одноосная анизотропия), или в направлении, перпендикулярном биссектрисе угла между оптическими осями (двухосная анизотропия), то п называют главным показателем преломления необыкновенного луча (ГПП).  [c.768]

Это справедливо для оптически изотропных сред. В анизотропных средах (кристаллах) ортогональность луча и волновой поверхности является не обычной евклидовой, а тензорно обобщенной неевклидовой ортогональностью.  [c.301]

Таким образом, поскольку первоначально изотропный материал модели под действием напряжений становится анизотропным и получает свойство двойного лучепреломления, а направления главных напряжений совпадают с главными осями оптической симметрии, то можно связать величины главных напряжений с главными показателями преломления п , щ и п . Заметим, что в каждой точке анизотропной среды оптические свойства могут быть выражены с помощью эллипсоида показателей преломления с полуосями, равными главным показателям преломления среды < Ла < з- Искомая связь может быть представлена для объемного напряженного состояния уравнениями Максвелла  [c.67]

Распространение света в оптически изотропной и анизотропной средах  [c.250]

Оптические свойства в каждой точке О анизотропной среды (модели) выражаются эллипсоидом показателей преломления (эллипсоид Френеля) (фиг. 180) с полуосями, равными главным показателям преломления n-iмонохроматическая волна направлена по N, то она распространяется в виде двух плоско поляризованных во взаимно перпендикулярных направлениях волн с показателями преломления nj и Пц, равными полуосям 01 и ОП эллипса, получаемого при сечении эллипсоида в точке О плоскостью, нормальной к /V направления 01 и ОП являются направлениями колебаний  [c.251]

Оптические свойства в каждой точке анизотропной среды выражаются эллипсоидом показателей преломления с полуосями, равными главным показателям преломления Пу, 2 и щ среды, связанными со скоростями распространения света в этих направлениях [91. Направления полуосей являются главными осями оптической симметрии.  [c.19]

В случае изотропных кристаллов эффект поляризационного окрашивания можно получить с помощью анизотропных тонких пленок (например, травление латуни в сульфате натрия анодное окисление алюминия). Известны также другие сферы применения поляризационной микроскопии среди них идентификация оптически анизотропных неметаллических включений на основе их окраски или использование характеристических эффектов анизотропии [671.  [c.179]

При рассмотрении прохождения света через изотропную среду мы считали, что вектор электрической индукции О связан с вектором Е соотношением В = еЕ, где е — скалярная величина и, следовательно, О и Е имеют одинаковые направления. В общем случае оптически анизотропной среды направления векторов О и Е не совпадают друг с другом. Связь между ними задается через тензор диэлектрической проницаемости. Соотноще-ние между О и Е можно записать в виде  [c.40]

Как уже было показано, луч света, проходящий через оптически анизотропную среду, разлагается на две плоскополяризо-ванные составляющие, распространяющиеся с разными скоростями. Разность фаз между двумя составляющими обозначалась нами через а. Рассмотрим теперь двоякопреломляющую пластинку толщиной d, при просвечивании которой накапливается разность фаз а. Предположим, что пластинка просвечивается плоско-поляризованным светом перпендикулярно плоскости пластинки и что плоскость колебаний этого луча образует с одной из главных осей пластинки угол ф (фиг. 1.16).  [c.32]


ОПТИЧЕСКАЯ АНИЗОТРОПИЯ — различие оптич. свойств среды, связанное с зависимостью скорости световых волн от направления распространения и их поляризации. О. а. проявляется в двойном лучепреломлении, дихроизме, вращении плоскости поляризации, а также в деполяризации при рассеянии света в среде, в поляри-зов. люминесценции и т. д. Только в исключительных условиях оптич. излучение определённых поляризаций и направлений распространяется в оптически авиао-тропных средах не преобразуясь. В прозрачной оптически анизотропной среде световая волна в общем случае представляет собой суперпозицию двух ортогонально поляризов. волн, имеющих разные скорости распространения.  [c.427]

Симметрия тензора eji позволяет классифицировать оптически анизотропные среды. Так, при несущественном поглощении света тензор эрмитов, т, е. Ej — е. Если при этом он веществен, т. е. = е, что отвечает синфазности поляризации и напряжённости, то среда, называемая оптически неактивной, в общем случае характеризуется тремя величинами ек (А = 1, 2, 3), к-рые определяют диэлектрнч. свойства вдоль трёх ортогональных т. н. диэлектрнч. осей. Если все 8к различны, то в среде есть два выделенных направления, называемых оптич. осями, вдоль к-рых скорость распространеиия света не зависит от его по-ляризации. Такие среды наз, двуосными. Если две на  [c.427]

Кксиальная сп.мметрия взаимодействия света со средой может нарушаться вследствие оптической анизотро геми самой среды. При этом в области полос поглощения света оптически анизотропные среды неодинаково поглощают обыкновенный и необыкновенный лучи (линейный дихроизм). При достаточной величине разности соответствующих оптич. плотностей одна из поляри-зац. компонент светового пучка может поглотиться практически полностью, и прошедший через среду свет приобретает высокую степень лпнейной поляризации. Такие П. наз. д и х р о и ч в ы м и. Наиб, эффективными и практически единственными применяемыми в наст, время дихроичныМи П. являются поляроиды. Достоинствами поляроидов являются компактность, большая угл. апертура и высокая поляризующая способность, недостатками — низкая лучевая прочность и сильный хроматизм.  [c.60]

Г В области прозрачности для оптически анизотропных сред (кристаллов) характерно двойное лучепреломление, проявляющееся, в частности, в различии направлений групповых скоростей двух ортогонально поляризованных компонент распространяющегося по кристаллу светового луча. При пропускании узкого светового луча через соответствующим образом вырезанную пластинку оптически анизотропного кристалла на выходе из пластинки (при достаточной величине двупреломле-ния) световой луч расщепится на два луча, линейно поляризованных во взаимно перпендикулярных направлениях (рис. 1). Этот способ применяется для поляризации узнонаправленных пучков малого сечения (напр..  [c.60]

Нек-рые из этих эффектов лежат в основе простейших поляризац. приборов — поляризаторов, фазовых пластинок, компенсаторов оптических, деполяризаторов и т. д,, с помощью к-рых осуществляется создание, преобразование и анализ состояния П. с. Изменение состояния П. с. в результате прохождения через дву-прелоьсляющую среду лежит в основе изучения оптич. анизотропии кристаллов. При визуальных исследованиях оптически анизотропных сред используется эффект хроматич, поляризации — окрашивания поляри-зов. пучка белого света в результате прохождения через анизотропный кристалл и анализатор.  [c.67]

В общем случае оптически анизотропной среды величина 6 выражается через компоненты тензора диэлектрич. проницаемости Ец. Для слабопоглощающсй среды  [c.330]

Харрис с сотр. [14, 15] предложили спектральный фильтр с электронной настройкой на основе коллинеарного акустооптического взаимодействия в оптически анизотропных средах и продемонстрировали его работу. В разд. 9.5.2 мы кратко рассмотрели одну из конфигураций взаимодействия с участием сдвиговой волны. В другом эксперименте, выполненном этими авторами, оптические волны и продольная акустическая волна распространялись вдоль оси X кристалла LiNbOj. На рис. 10.12, а показано схематически устройство этого фильтра. Падающий пучок может быть поляризован либо вдоль оси у, либо вдоль оси Z. Благодаря фотоупругому эффекту с постоянной /7,4 (= (см. задачу 10.4) возникает брэгговская дифракция в ортогональную поляризацию. Перестройка по спектру от длины волны 7000 до 5500 А была получена изменением акустической частоты от 750 до 1050 МГц (см. рис. 10.12, б). Для кристалла LiNbOj длиной 1,8 см с указанной на рис. 10.12, а ориентацией двулучепреломление равно Ап = 0,09. Из (10.3.9) следует, что ширина полосы пропускания АХ,/2 на длине волны X = 6250 А составляет около 2 А. Необходимо заметить, что в спектре пропускания не присутствуют вторичные полосы или полосы высших порядков, поскольку акустическая волна является синусоидальной. Интенсивность звука 1 , необходимая для 100%-ного преобразования мощности (т. е. для того, чтобы ,2 - = 7г/2), так же, как и в (10.1.9), определяется выражением (см. задачу 10.4)  [c.423]

При создании этих датчиков используют также новые физические явления и эффекты продольный и магнитоконцентрационный эффекты в полупроводнике, фотоэффект на границе полупроводниковых монокристаллов, различные явления в оптических анизотропных средах и т. п.  [c.39]

Нек-рые из этих эффектов лежат в основе простейших поляризационных приборов — поляризаторов, фазовых пластинок, анализаторов, компенсаторов оптических и др., с помощью к-рых осуществляется создание, преобразование и анализ состояния П. с. В наст, время разработаны эффективные методы расчёта изменения состояния П. с. при прохождении света через оптически анизотропные элементы. Изменение поляризац. состояния светового пучка вследствие прохождения через двупреломляющую среду используется для изучения оптич. анизотропии кристаллов (см. Кристаллооптика). При визуальных исследованиях оптически анизотропных сред широко используется эффект хроматической поляризации — окрашивание поляризованного пучка белого света после прохождения через анизотропный кристалл и анализатор. В хроматич, поляризации в наиболее эфф. форме проявляется интерференция поляризованных лучей.  [c.576]


Распространение света в анизотропных средах имеет ряд особенностей. Известно, что анизотропная среда характеризуется различными свойствами по разным направлениям. Возможна анизотропия любых свойств — механических, электрических, упругих, оптических и т. п. Анизотропия свойств всегда тесно связана с анизотропией строения вещества и часто встречается в разнообразных объектах как природного, так II искусственного происхождения. Мы рассмотрим оптическую анизотропию, т. е. различие оптичес кнх свойств по разным направлениям,. которое наиболее ярко проявляется в кристаллических средах. Распространение света в кристаллах изучает кристаллооптика. Теория и экспериментальные методы кристаллооптики применимы и к анизотропным веществам, не обладающим кристаллической структурой.  [c.30]

В предыдущей главе отмечалось, что кристаллическая среда проявляет постоянную оптическую анизотропию в виде двойного -лучепреломления. В 1816 г. Брюстером было установлено, что некоторые изотропные материалы, когда в них возникают напряжения или деформации, становятся оптически анизотропными, как кристаллы. Все рассматривавшиеся нами явления, связанные с прохождением света через двоякопреломляющие пластины, свойственны естественным и искусственным кристаллам с постоянным двойным лучепреломлением, а также и изотропным аморфным материалам с временным двойным лучепреломлением. Почти все прозрачные материалы становятся под действием нагрузки двояко-преломляюгцими. В зависимости от материала величина двойного лучепреломления определяется напряжениями или деформациями или же теми и другими одновременно. Однако в линейно упругих материалах, в которых напряжения и деформации связаны линейной зависимостью, оптические эффекты можно в равной мере относить и к напряжениям, и к деформациям. Это свойство временного двойного лучепреломления при действии нагрузки называют фотоупругостью.  [c.61]

СПОСОБНОСТЬ [вращательная — отношение угла поворота плоскости поляризации света к расстоянию, пройденному светом в оптически активной среде излучательная — отношение светового потока, испускаемого светящейся поверхностью, к площади этой поверхности и к интервалу частот, в котором содержится излучение отражательная — отношение отраженной телом энергии к полной энергии падающих на него электромагнитных волн в единичном интервале частот поглощательная— отношение поглощенного телом потока энергии электромагнитного излучения в некотором интервале частот к потоку энергии падающего на него электромагнит-, ного излучения в том же интервале частот разрешающая прибора — характеристика способности прибора (оптического давать раздельные изображения двух близких друг к другу точек объекта спектрального давать раздельные изображения двух близких друг к другу по длинам волн спектральных линий) тормозная — отношение энергии, теряемой ионизирующей частицей на некотором участке пути в веществе, к длине этого участка пути] СРЕДА [есть общее наименование физических объектов, в которых движутся тела или частицы и распространяются волны активная — вещество, в котором осуществлена инверсия населенностей уровней энергии и в результате чего может быть достигнуто усиление электромагнитных волн при их прохождении через вещество анизотропная — вещество, физические свойства которого неодинаковы по различным направлениям гнротронная — среда, в которой существует естественная или искусственная оптическая активность диспергирующая — вещество, фазовая скорость распространения волн в котором зависит от их частоты изотропная — вещество, физические свойства которого одинаковы по всем выбранным в нем направлениям конденсированная—твердая или жидкая среда]  [c.279]

ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ — раздвоение светового луча при прохождении через анизотропную среду, обусловленное зависимостью показателя преломления (а следовательно, и скорости волны) от её поляризации и ориентации волнового вектора относительно кристаллография, осей, т. е. от направления распространения (см. Крист-аллооптика, Оптическая анизотропия). При падении световой волны на поверхность анизотропной среды в последней возникают две преломлённые волны, имеющие разную поляризацию и идущие в разных направлениях с разл. скоростями. Отношение амплитуд этих волн зависит от поляриза-  [c.559]

Электрооптический К. э.— квадратичный электро-оптич. эффект, возникновение двойного лучепреломления в оптически изотропных веществах (газах, жидкостях, кристаллах с центром симметрии, стёклах) под действием внеш. однородного электрич. поля. Оптически изотропная среда, помещённая в электрич. поле, становится анизотропной, приобретает свойства одноосного кристалла (см. Кристаллооптика), оптич. ось к-рого нанравле]1а вдоль поля.  [c.348]

Физическая О. рассматривает проблемы, связанные с процессами испускания света, природой света и световых явлений. Утверждение, что свет есть поперечные ал.-маги, волны, явилось результатом огромного числа эксперим. исследований дифракции света, интерференции света, поляризации света, распространения света в анизотропных средах (см. Кристаллооптика, Оптическая анизотропия]. Совокупность явлений, в к-рых проявляется волновая природа света, изучается в крупном разделе фиа. О.— волновой оптике. Её матем. основанием служат общие ур-ния класснч. электродинамики — Максвелла уравнения. Свойства среды при этом характеризуются макроскодич. материальными константами — значениями диэлектрической проницаемости 8 и магнитной проницаемости р,, входящими в ур-ния Максвелла в виде коэффициентов. Эти значения однозначно определяют показатель преломления среды л = [Лер.  [c.419]

В разл. агрегатных состояниях характер флуктуаций различный, II в соответствии с этим различается Р. с. в них. В разреженных газах е = 1 4лар, где 1/р — объём, приходящийся на одну молекулу, а а — её поляризуемость. Флуктуации 8 определяются флуктуациями р. Пространственное взаимное положение частиц в газе статистически независимо, поэтому длину корреляции можно считать нулевой. Это означает, что фаза волны, рассеянной отд. частицей, не связана с остальными и интерференц, эффекты несущественны. Поэтому интенсивность рассеянного света равна сумме интенсивностей полей, рассеянных отд. молекулами. Если молекулы оптически анизотропны, то интенсивность рассеяния на каждой зависит от её ориентации относительно вектора поляризации падающего света. Поэтому, как и в случае отд. молекул, картина Р. с. в среде зависит от его поляризации. Рассеяние неполярнзованного падающего излучения описывается коэф. рассеяния  [c.281]


Смотреть страницы где упоминается термин Оптически анизотропные среды : [c.30]    [c.232]    [c.179]    [c.427]    [c.61]    [c.19]    [c.144]    [c.584]    [c.583]    [c.511]    [c.58]    [c.179]   
Смотреть главы в:

Оптика  -> Оптически анизотропные среды



ПОИСК



Анизотропность

Оптическая среда

Оптически анизотропные среды - Распространение света

Оптические свойства анизотропной среды . 144. Поверхность волны (лучевая) и поверхность нормалей

Среда анизотропная



© 2025 Mash-xxl.info Реклама на сайте