Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эффект фотоупругости

Для поляризац. модуляции света обычно используются эффекты наведённой оптич. анизотропии Керра эффект, Поккельса эффект, Фарадея эффект, фотоупругость) в условиях модуляции внеш, возмущения (электрич. ноля, магн. поля, деформации), приложенного к оптич. среде. Возникающая при этом модуляция фазовых соотношений между поляризац. компонентами  [c.60]

Искусственная анизотропия. Наряду с анизотропией, обусловленной свойствами среды, под действием внешних полей возникает наведенная (искусственная) анизотропия. В зависимости от природы внешнего поля различают следующие виды искусственной анизотропии пьезооптический эффект (фотоупругость), электрооптический эффект (линейный и квадратичный), магнитооптический эффект (двойное лучепреломление и оптическая активность). Рассмотрим эти явления последовательно.  [c.100]


Амплитудная модуляция света возможна также на основе эффекта фотоупругости. Многие прозрачные тела под влиянием механических напряжений приобретают двойное преломление (в них получается различный коэффициент преломления для света, колеблющегося параллельно или перпендикулярно к направлению давления [2, 13]). Благодаря этому плоскость колебаний соответствующим образом падающего линейно поляризованного света вращается в зависимости от звукового давле-  [c.183]

Звук входит в тело, вызывая в нем сильный эффект фотоупругости (в некоторых видах пластмасс и стекол). Свойства таких головок аналогичны показанным на рис. 8.19.  [c.184]

ПРИ помощи ЭФФЕКТА ФОТОУПРУГОСТИ  [c.297]

Эффект фотоупругости (двойное преломление в напряженном состоянии) был описан в разделе 8.6. Если заменить фотоэлемент, показанный на рис. 8.21, камерой или экраном, то будет получено изображение внутренней структуры образца, так как распространение звука в среде с двойным преломлением зависит от его распространения в изделии.  [c.297]

Модели, используемые в обычных фотоупругих испытаниях, нагружаются при обычной комнатной температуре, являются упругими и для них картина интерференционных полос исчезает вместе со снятием нагрузки. Поскольку свет должен пройти сквозь всю толщину модели, интерпретация картины интерференционных полос возможна только в том случае, когда модель находится в плоском напряженном состоянии —компоненты напряжения при этом распределяются по толщине пластинки почти равномерно. Когда это не имеет места, как, например, при трехмерном распределении напряжений, оптический эффект определяется интегралом, содержащим напряжения во всех точках, расположенных вдоль луча ).  [c.174]

Метод фотоупругости основан на свойстве некоторых прозрачных материалов (стекла, целлулоида, смолы, пластмассы) изменять оптические свойства в зависимости от действующих в них механических напряжений. В этом методе обычно используется эффект двойного лучепреломления плоскополяризованный луч при попадании на прозрачную плоскую модель исследуемой конструкции может быть разложен на две взаимно перпендикулярные составляющие, параллельные направлениям действия ставных напряжений. Зги две составляющие после прохождения через однородный изотропный напряженный материал снова могут быть совмещены. Когда в модели действуют механические напряжения, скорости прохождения составляющих этой волны в плоскости главных напряжений [c.270]


Недавно модель Дагдейла была модифицирована с целью учета эффекта разгрузки [37] впереди тонкой пластической зоны [38]. Остаточные напряжения в наклепанном материале на обоих берегах распространяющейся трещины при этом были смоделированы при помощи двух сосредоточенных сил вблизи вершины физической трещины, как показано на рис. 9 [38,39]. Эта модель была подвергнута экспериментальной проверке в некоторых опытах с применением метода фотоупругости.  [c.59]

Упругооптический эффект, или эффект фотоупругости, состоит в изменении показателя преломления вещества в результате влияния внешних статических или переменных механических напряжений.  [c.873]

При неоднородном освещении среды может возникнуть неоднородное поле упругих напряжений, вызывающее изменение п. Упругие напряжения могут быть обусловлены воздействием электрич. поля (см. Пьеяо-электрики) или — при высоких интенсивностях свита — непосредственно деформацией среды под действием света (см. Пъезооптический эффект, Фотоупругость).  [c.624]

Лит. Хачатурян А. Г., Теория фазовых превращений и структура твердых растворов, М., 1974 Чуистов К. В., Старение металлических сплавов. К., 1985. В. А. Финкелъ. МОДУЛЯТОРЫ СВЕТА — устройства для управления параметрами световых потоков (амплитудой, частотой, фазой, поляризацией). Простейшие амплитудные М. с.— механич. прерыватели светового луча, в качестве к-рых используют вращающиеся и колеблющиеся заслонки, призмы, зеркала, а также вращающиеся растры. Однако быстродействие и надёжность таких М. с. невелики. Наиб, широкое практич. применение получили М. с. на основе физ. эффектов, при к-рых внеш. поля меняют оптич. характеристики среды, таких, как влектрооптические Поккельса эффект и Керра аффект, магнитооптический Фарадея эффект, фотоупругость и сдвиг края полосы поглощения Келдыша — Франца эффект).  [c.179]

Прежде чем приступить к измерениям в опытах на кручение, Вертгейм для каждого образца определял модуль упругости Е при растяжении и устанавливал величину сопутствовавших ему изменений объема полых стержней. Он ожидал, что изменения объема будут иметь место, и нашел, что результаты его измерений для латунных образцов весьма приблизительно согласуются с ожидавшимися им значениями. То, что согласованность результатов его измерений для железных и стальных образцов была иной, он приписал условиям, в которых находились образцы до проведения опытов. Его опыты по кручению со стеклом сопровождались наблюдениями эффекта фотоупругости. Несмотря на осложнения при экспериментах, затруднившие получение количественных результатов, и вопреки тому, что нагружение, вызывающее кручение, сделало невозможным сравнение с теорией Неймана, описание Вертгей-мом явления фотоупругости в процессе нагружения представляет интерес.  [c.133]

Сплошные и пунктирные линии — результаты теоретического анализа, выполиеииого для -X, 0.4 кВ.см 1 с учетом и без учета вклада эффекта фотоупругости. Р — угол между  [c.96]

Эффект фотоупругости проявляето на телах любой формы (рис. 57—60 Геометрическая характеристика пр странства приложения воздействия поверхность тела, а результата во% действия — объем тела, поверхнос1 тела. Оптико-механические характер ристики некоторых материалов пр1 ведены в табл. 18.  [c.114]

Получение изображения с помощью эффекта фотоупругости (раздел 13.6 и 13.7) основано на так называемом двойном пре- ломлении под действием напряжений под влиянием механических напряжения (например, звуковой волны) свет распространяется во многих прозрачных твердых веществах в форме двух составляющих волп, линейно поляризованных перпендикулярно одна к другой и к направлению их распространения и имеющих различные скорости. Это приводит к вращению плоскости колебаний линейно поляризованного света, что можно сделать видимым цри помощи крестообразного поляризационного фильтра. Такой эффект используется для получения изображения звукорого поля искателя, для исследования распространений звука и для неразрушающего контроля материалов.  [c.195]

Как преимущественно качественные способы измерения зву кового поля могут быть использованы шлирен-оптические ме тоды и эффект фотоупругости (главы 8 и 13). При обеспечении акустического контакта искателя со сталью звуковое поле к стали тоже может быть измерено либо приемником, либо при помощи небольшого отражателя. В качестве приемника в этом случае применяется электродинамический зонд, как это рекомендуется по инструкции Западногерманского общества по не-разрущающему контролю [1711]. С его помощью можно бесконтактно измерять звуковое поле на поверхности эталонного образца, причем все же нужно следить за тем, чтобы расстояние между зондом и эталонным образцом было всегда постоянным. Электродинамический зонд часто применяется для определения характеристики направленности наклонных искателей. Искатель ставят на плоскую поверхность стального полуцилиндра и настраивают на максимальное отражение от поверхности цилиндра (рис. 10.59). Результаты показаны на рис. 10.60. Уго г ввода звука можно измерять с точностью до 0,3°, т. е. гораздоточнее, чем по эталонным образцам № 1 или 2.  [c.258]


Интересным применением шлирен-метода и эффекта фотоупругости для получения изображения является ультразвуковой прибор с экраном конструкции Ханстеда, Энга и Уэйта (рис. 13.3).  [c.297]

В [97] использовался эффект фотоупругости для измерения про- странственного распределения остаточных осевых напряжений в оптических стекловолокнах. Эффект фотоупругости, как известно [35], заключается в появлении двойного лучепреломления в твердых прозрачных телах под действием какого-либо упругого напря-  [c.101]

Установим соотношение между изменением д трической проницаемости Аец и величиной акусти мощности Ра, вызывающей это изменение всле, эффекта фотоупругости. Очевидно, что  [c.18]

В общем случае, когда плоскости главных напряжений в модели не параллельны направлению просвечивания, закон фотоупругости выражается через так называемые квазиглавные напряжения. Эти напряжения представляют собой максимальное и минимальное значение нормальных напряжений, действующих на параллельных направлению просвечивания плоскостях они могут меняться по толщине образца, однако оптический эффект зависит только от пх средних значений.  [c.498]

И ЭТО может обусловить увеличение поверхностной энергии [13]. Точные измерения действительной величины поверхности отсутствуют, так что вклад данного эффекта количественно не оценивал ся. Вряд ли, однако, он может быть определяющим в отношении вязкости разрушения. В металлах поле напряжений перед трещи-. ной приводит к локальному пластическому течению. Форма этой-так называемой пластической зоны изображена на рис. 14, а. В ор--тотропном материале, главная ось которого перпендикулярна тре- щине (например, в ориентированных волокнистых композитах), зона пластической деформации, соответствующая этому полю напряжений, более сжата, как показано на рис. 14,6. Олстер [30]i проверил это экспериментально, нанеся на композит бор алюми-ний до приложения нагрузки фотоупругое покрытие. Оказалось, что в этом композите волокна ведут себя вплоть до разрушения упруго, а матрица— упругопластически. Следовательно, матрица,  [c.283]

Р. Д. Кейз. Изучалось ли влияние краевых эффектов на плоское напряженное состояние в образце на двухосное растяжение с использованием явления фотоупругости  [c.69]

В предыдущей главе отмечалось, что кристаллическая среда проявляет постоянную оптическую анизотропию в виде двойного -лучепреломления. В 1816 г. Брюстером было установлено, что некоторые изотропные материалы, когда в них возникают напряжения или деформации, становятся оптически анизотропными, как кристаллы. Все рассматривавшиеся нами явления, связанные с прохождением света через двоякопреломляющие пластины, свойственны естественным и искусственным кристаллам с постоянным двойным лучепреломлением, а также и изотропным аморфным материалам с временным двойным лучепреломлением. Почти все прозрачные материалы становятся под действием нагрузки двояко-преломляюгцими. В зависимости от материала величина двойного лучепреломления определяется напряжениями или деформациями или же теми и другими одновременно. Однако в линейно упругих материалах, в которых напряжения и деформации связаны линейной зависимостью, оптические эффекты можно в равной мере относить и к напряжениям, и к деформациям. Это свойство временного двойного лучепреломления при действии нагрузки называют фотоупругостью.  [c.61]

Это основной закон фотоупругости (закон Вертгейма), выражающий количественную связь мел ду оптическим эффектом и разностью главных напряжений. Коэффициент С зависит от физических boii tb материала и длины волны применяемого света, имеет размерность, обратную напряжению, и выражается или в брюстерах (1 брю-стер = M IduH,), или в единицах 10 см 1кГ.  [c.21]

Наведённая О. а. может возникать в оптически изотропных средах под внеш. воздействием, меняющим локальную сил1метрию. Такими воздействиями могут быть механич., алектрич., магн. поля, мощные потоки излучения см. Фотоупругость, Керра эффект, Фарадея эффект, Коттона —Мутона эффект. Нелинейная оптическая активность).  [c.428]

ФОТОУПР УГОСТЬ пьезооптический эффект, упругооптический эффект)—изменение показателя преломления (или ориентации Френеля эллипсоида) кристалла под действием механич. напряжения. Ф. описывается тензором 4-го ранга и в общем случае характеризуется 36 компонентами. Ф. наблюдается не только в кристаллах, но и в изотропных телах. Фотоупругие материалы (стёкла, полимеры, кристаллы) используются при моделировании распределения механич. напряжений в деталях сложной формы, а также для модуляции частоты излучения лазера с помощью различных акустооптич. устройств. Эффективными фотоупругими материалами являются халькогенидные стёкла и кристаллы а-НЮз, РЬМоО, ЪОг- Ф. возникает за счёт внутр. деформации среды.  [c.363]

ЭЛЕКТРОСТРЙКЦИЯ—деформация диэлектрика, пропорциональная квадрату приложенного электрич. поля (или поляризации). Электрострикционная деформация не меняет знак при изменении направления поля на противоположное. При наличии обратного пьезоэлектрич. эффекта (линейной связи деформации и поля см. Пьеюэлек-трики) Э. выступает в качестве малой нелинейной добавки к нему. В отличие от пьезоэлектрич. эффекта, у Э. нет обратного эффекта, но есть термодина.мически сопряжённый эффект — изменение диэлектрической проницаемости пол действием механич. напряжения (аналог фотоупруго-сти), Коэф. Э. является тензором 4-го ранга, несимметричным по перестановке 1-й и 2-й пар индексов и симметричным по перестановке индексов внутри 1-й и 2-й пар. Тензор Э. характеризуется в общем случае (триклинная симметрия) 36 компонентами. Э. может иметь место в центросимметричных кристаллах и в изотропной среде. В сегнето-электриках с центросимметричной исходной (неполярной) фазой эффект Э. велик в области фазового перехода, а в сегнетоэлектрич. фазе пьезоэлектрич. эффект можно  [c.594]

Для исследования деформаций непрозрачных натурных конструкций используются фотоупругие покрытия, представляющие собой тонкие пластины двупреломляющего материала, на одну из сторон которых нанесен отражающий слой. Эти пластины со стороны отражающего слоя наклеиваются на изучаемую поверхность и деформируются совместно с ней. При этом в покрытии возникает оптический эффект. Картины изохром и изоклины наблюдаются в покрытиях с помощью полярископов отраженного света. Оптическая разность хода А в этом случае связана с разностью главных деформаций  [c.538]


Метод фотоупругости позволяет натядно и просто определять поля распределений напряжений в телах сложной формы, в том числе в зонах концентрации напряжений. Однако исследование приходится проводить не на реальном, а на модельном материале, который отражает действительные свойства материалов только в упругой области. Для изучения закономерностей пластического деформирования по1фытие из оптически активного материала наносится на реальную деталь, например, на вращающийся диск. Используя стробоскопические эффекты и исследуя напряжения по-1фьггий, можно оценить деформированное состояние реальной детали.  [c.271]

Акустооптика изучает взаимодействие оптических волн с акустическими в различных веществах. Возможность такого взаимодействия впервые предсказал Бриллюэн в 1922 г., а затем ее экспериментально проверили в 1932 г. Дебай и Сиарс в США и Люка и Бигар во Франции. При взаимодействии света со звуковыми волнами наиболее интересное явление представляет собой дифракция света на акустических возмущениях среды. При распространении звука в среде возникает соответствующее поле напряжений. Эти напряжения приводят к изменению показателя преломления. Такое явление называется фотоупругим эффектом. Поле напряжений для плоской акустической волны является периодической функцией координат. Поскольку показатель преломления среды претерпевает периодическое возмущение, возникает явление брэгговской связи, как показано в гл. 6. Акустооптическое взаимодействие является удобным способом анализа звуковых полей в твердых телах и управления лазерным излучением. Модуляция света при акустооптическом взаимодействии находит многочисленные применения, в том числе в модуляторах света, дефлекторах, устройствах обработки сигналов, перестраиваемых фильтрах и анализаторах спектра. Некоторые из этих устройств мы рассмотрим в следующей главе.  [c.343]


Смотреть страницы где упоминается термин Эффект фотоупругости : [c.873]    [c.16]    [c.186]    [c.43]    [c.190]    [c.138]    [c.184]    [c.297]    [c.124]    [c.171]    [c.177]    [c.48]    [c.501]    [c.521]    [c.65]    [c.46]    [c.257]    [c.290]    [c.343]   
Смотреть главы в:

Физические величины. Справочник  -> Эффект фотоупругости



ПОИСК



Фотоупругий эффект

Фотоупругий эффект

Фотоупругость



© 2025 Mash-xxl.info Реклама на сайте