Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приборы поляризационные

Приборы поляризационные. Внутреннее состояние объекта контроля определяется по воздействию на вектор поляризации сигнала.  [c.220]

В зависимости от условий работы в приборах поляризационные светофильтры делятся на три категории  [c.89]

Так как при всех методах количественного исследования поляризованного света требуется определение угла поворота (поляризатора, пластинки в или компенсатора), то обычно поляризационные приборы снабжаются оправами с хорошими угловыми делениями.  [c.399]


Соотношения, изображенные на указанных кривых (или в соответствующих формулах), подвергались многократно опытной проверке и хорошо подтверждены опытом. Опытную их проверку можно выполнить на любой установке, дающей возможность исследования интенсивности света, направленного под разными углами (фотометр, соединенный с гониометром). При этом обычно исследуются отдельно Е-и -компоненты, так что либо применяется поляризационный фотометр, либо прибор снабжается дополнительно поляризационной призмой.  [c.478]

В технологии изготовления оптических приборов широко используются различные виды покрытий. Это — защитные, антикоррозионные пленки поляризационные, просветляющие и отражающие покрытия. Некоторые виды покрытий непосредственно являются оптическими приборами, например, дифракционные решетки с нанесенными оптическим способом штрихами. В процессе изготовления таких оптических элементов в материале пленки возникают значительные напряжения, сильно влияющие на прочностные свойства изделий. Поэтому во всех технологических операциях предусматривают контроль остаточных напряжений.  [c.113]

Перспективны объективные методы спектрально-фотометрического анализа в широко.ч диапазоне длин воли (0,2... 10 мкм) с использованием различных приставок со стандартным спектральным прибором, а также поляризационные методы.  [c.73]

Выше были приведены наиболее известные примеры использования поляризационных приборов. Однако область их применения значительно шире. Отметим важнейшие из них.  [c.111]

При отсутствии резкого различия в суммарной величине поляризационного сопротивления при изменениях полярности электродов датчика можно говорить о смешанном характере контроля коррозионного процесса. Вполне понятно, что омическое сопротивление цепи -и приборов и АЕ во всех замерах должны быть постоянны и известны.  [c.112]

Ввиду того что атмосферная коррозия металлов протекает в тонких пленках электролита, представляет интерес изучить процесс поляризуемости сплавов в тонких слоях морской воды. Первые работы в этой области были выполнены И. Л. Розенфельдом с сотрудниками [80]. На специально сконструированном приборе проводили опыты в тонких слоях электролитов (толщина пленки 100 мкм). Полученные поляризационные кривые для стали и чугуна (рис. 111. 12) показывают, что с наибольшей поляризацией катодный процесс протекает на чугуне, наименьшей — на Ст. 3.  [c.55]

Исследования поляризационного сопротивления. Так называемое поляризационное сопротивление R = т Ц измеряют в линейной области поляризационной кривой, т.е. в непосредственной близости от потенциала коррозии (см. 2.7). Поляризационное сопротивление является мерой заторможенности коррозионного процесса и в данной системе обратно пропорционально току коррозии. Имеются промышленные инструменты для измерения поляризационного сопротивления. Измерения производят, используя два или три электрода, смонтированные вместе и образующие измерительный датчик. Результат может быть прочитан непосредственно на шкале прибора в единицах скорости коррозии.  [c.145]


Для измерения поляризационного потенциала выключают тумблер, при этом стрелка (или перо) прибора перемещаются. Показания прибора, соответствующие значению поляризационного потенциала, снимают в первый момент после остановки стрелки (пера). Рекомендуется продолжительность разрыва цепи "трубопровод-датчик" не более 2-3 с. Следующие показания вольтметра снимают через 10-15 с после включения тумблера.  [c.21]

Существует много конструкций приборов для замера изменения толщины в плоских моделях (образцах) при действии нагрузки. Описание одного из таких приборов, применяющихся для получения дополнительных данных при исследованиях поляризационно-оптическим методом, можно найти в книге Кокера и Файлона.  [c.194]

Польди приборы 3—13 Польстеры осевых букс тендеров 13 — 399 Поляризационная оптика 3 — 263 Поляризационно-оптический метод исследования распределения напряжений (2-я) — 394  [c.207]

Спектроскоп с поляризационным фотометром (стилометр) применяется для количественного спектрального анализа. Схема прибора изображена на фиг. 4. Щель спектроскопа 5 снабжена клинообразной диафрагмой  [c.116]

Отдельные приборы и части поляризационной оптики  [c.263]

Данная работа является практическим руководством по определению напряжений поляризационно-оптическим методом. Она состоит из шести глав, в которых изложены основы этого метода, описаны способы измерения величин напряжений и методы обработки результатов эксперимента для плоской и объемной задач в пределах упругости, свойства оптически чувствительных материалов и технология их изготовления, а также даны сведения о некоторых тинах поляризационных приборов и вспомогательного оборудования.  [c.5]

Метод компенсации — самый точный, но весьма трудоемкий метод определения разности главных напряжений. Измерения оптической разности хода лучей, прошедших через напряженную модель, проводятся на поляризационной установке в отдельных точках модели при помощи специальных оптических приборов, называемых компенсаторами.  [c.35]

Степень поляризации зависит от характера анодных и катодных участков, состава коррозионной среды и плотности коррозионного тока. Чем бо.чьше наклон поляризационных кривых, тем сильнее поляризуется электрод и тем сильнее тормозится анодный или катодный процесс. Для снятия поляризационных кривых могут быть использованы разные схемы установок. Схема любой установки для снятия поляризационных кривых гальва-ностатическим способом подобна схеме для и.змерения электродных потешгиалов компенсационным методом н отличается от нее по существу только тем, что она предусматривает подвод постоянного тока к исследуемому электроду и измерение его величины, т. е. включает источник постоянного тока, приборы для измерения силы тока и регулирования его величины и вспомогательный поляризующий электрод. Схема установки для снятия поляризационных кривых приведена на рис. 222.  [c.342]

Как уже отмечалось в разд. 5.4, некоторые металлы (например, железо и нержавеющие стали) могут быть надежно защищены, если их потенциал сдвинуть в положительную сторону до значений, лежащих в пассивной области анодной поляризационной кривой (см. рис. 5.1). Это значение потенциала обычно поддерживают автоматически с помощью электронного прибора, называемого потенциостатом. Практическое использование анодной защиты и применение для этих целей потенциостата впервые было предложено Эделеану [26].  [c.229]

Призма Николя. Шотлаидский физик Уильям Николь в 1828 г. впервые предложил поляризационный прибор, в основе устройства которого лежит явление двулучепреломления.  [c.228]

Общие замечания. Для превращения естественного света в ли-нейно-ноляризованный используют поляризационные приборы.  [c.231]

Рассмотрим состояние поляризации рассеянного света от изотропных и анизотропных молекул. Экспериментально такое исследование можно произвести с помощью поляризационных приборов, скажем с помощью николя. Соответствующие исследования показывают, что при рассеянии естественного света изотропными молекулами происходит линейная поляризация в направлении, составляющем 90" с первоначалын11м направлением падающего света. Нетрудно объяснить полученный результат.  [c.315]


Если естественный свет проходит через два поляризующих прибора, соответствующие плоскости которых образуют между собой угол ф, то интенсивность света, пропущенного тат ой системой, будет пропорциональна соз ф. Закон этот был сформулирован Малюсом в 1810 г. и подтвержден тщательными фотометрическими измерениями Aparo, который построил на этом принципе фотометр. Небезынтересно заметить, что Малюс вывел свой закон, основываясь на корпускулярных представлениях о свете. С волновой точки зрения закон Малюса представляет собой следствие теоремы разложения векторов и утверждения, что интенсивность света пропорциональна квадрату амплитуды световой волны. Таким образом, закон Малюса может рассматриваться как непосредственное экспериментальное доказательство данного утверждения. Закон Малюса лежит в основе расчета интенсивности света, прошедшего через поляризатор и анализатор во всевозможных поляризационных приборах.  [c.379]

Измерителем скорости коррозии Р-5035 измеряют сопротивление поляризации двухэлектродного датчика на постоянном токе с одновременной компенсацией сопротивления раствора на переменном токе и начальной э. д. с. на постоянном токе. Диапазон измерения сопротивления поляризации от 5 до 50 000 Ом, диапазон компенсации сопротивления раствора от О до 2000 Ом и начальной э. д. с.— 0 30 мВ. Поляризационное напряжение не более 10 мВ. Прибор выпускают без датчика, но с приложением различных схем выполнения датчика в зависимости от условий его эксплуатации. При подклю - ени г датчика с рабочей поверхностью 2 см можно определять скорость коррозии  [c.93]

Интерференционно-поляризационная микроскопия для контроля качества оптически прозрачных сред с фазовыми неоднородностями (метод акад. Лебедева А. А., приборы Интерфакс фирмы Цейс и др.).  [c.111]

Контроль качества элементов поляризационных приборов (модуляторов, сканаторов, компенсаторов, поляризаторов и т. д.).  [c.112]

Поляризационные процессы смещения связанных зарядов в веществе до момента установления равновесного состояния протекают во времени, создавая токи смещения, в диэлектриках. Токи смещения упругосвязанных зарядов при электронной и ионной поляризациях столь кратковременны, что их обычно не удается зафиксировать прибором. Токи смещения различных видов замедленной поляризации, наблюдаемые у большого числа технических диэлектриков, называют абсорбционными токами. При постоянном напряжении абсорбционные токн, меняя свое направление, протекают только в моменты включения и выключения напряжения при переменном напряжении они протекают в течение всего времени нахождения материала в электрическом поле.  [c.30]

Довольно широкое распространение получил метод определения скорости коррозии металла котлов в стендовых условиях по поляризационному сопротивлению. Принципы, теоретические основы и практическое осуществление метода были подробно рассмотрены в 4.1. Так же как и в стояночных и эксплуатационных режимах, в стендовых условиях коррозионный контроль металла котлов может осуществляться приборами типа Антикор , позволяющими определять поляризационное сопротивление, пересчитывать его значение на показатель скорости коррозии, определять кинетику коррозионного процесса и т. д.  [c.143]

Полярископ — прибор, принцип действия которого основан на использовании свойств поляризованного света. Полярископы получили широкое распространение во многих отраслях физики. В настоящей главе описаны полярископы нескольких конструкций, которые предназначаются для исследования напряжений поляризационно-оптическим методом и которые были использованы авторами для решения многих задач. Существуют полярископы и иных конструкций, используемых другими исследователями для решения задач поляризационно-оптическим методом. Ряд конструкций изготовляется серийно. Подробно характеристики полярископов исследованы в статьях [1, 21. В настоящей книге авторы ограничиваются рассмотрением полярископа диф-фузорного типа, в котором модель просвечивается рассеянным светом, идущим от матового стекла. Такой полярископ дешевле других и проще в обращении. Точность результатов, даваемых таким полярископом, сопоставима с точностью результатов, обычно получаемых при применении сложного полярископа с линзами. Задачи, которые не могут быть решены с использованием полярископа диффузорного типа, встречаются сравнительно редко даже в практике специализированных лабораторий ).  [c.36]

Б о к ш т е й п М. Ф., Исследование оптических процессов в неотъ-юстированных поляризационных приборах, содержащих неточные элементы, сб. Поляризационно-оптический метод исследования напряжений , изд-во Наука , М., 1965.  [c.113]

Измерениями толщины широко пользовались раньше специалисты по поляризационно-оптическому методу для определения суммы главных напряжений с целью последующего разделения главных напряжений. Ими для этого было разработано много тонких и точных приборов. Чтобы проиллюстрировать порядок измеряемых величин, предположим, что модуль упругости материала модели и коэффициент Пуассона при комнатной температуре соответственно равны 35 ООО кг см - и 0,4 и что сумма главных напряжений составляет 70 кгкм . По формуле (8.29) запишем  [c.220]

Сущность потенциостатического метода состоит в том, что при помощи электронного прибора, называемого нотенциостатом, задают и поддерживают постоянным определенное значение потенциала. При заданном значении потенциала измеряют стационарную величину плотности тока. По полученным характеристикам плотности тока строят поляризационную потеищюстатическую кривую, отражающую зависимость стационарной плотности тока от потенциала.  [c.62]


Создание новых электрохимических приборов. Помимо уже упоминавшихся методик получения электрокаинллярных кривых и родственных зависимостей (метод вибрирующей границы) на кафедре были разработаны упрощенный потенциостат, логарифматор для автоматической записи поляризационных кривых в полулогарифмических координатах, а также измеритель скорости коррозии с набором датчиков и т. д.  [c.139]

К первой четверти XX в. количество и разнообразие точных приборов значительно возросло. Большинство из них относится к различным группам современного приборостроения [29,0.29—37]. Одну из ведущих групп в приборостроении занимают оптико-механические приборы, в которую входят 1. Микроскопы. 2. Астрономические приборы. 3. Геодезические приборы. 4. Астрофизические приборы. 5. Спектрометрические приборы. 6. Спектрографические приборы. 7. Фотометрические приборы. 8. Калориметрические приборы. 9. Поляризационные приборы. 10. Интерференционные приборы. 11. Аэрофотометрические приборы. 12. Фотограмметрические приборы. 13. Фотооптическая регистрирующая аппаратура. 14. Киноаппаратура. 15. Специальные приборы для фотокинопромышленности. 16. Офтальмологические приборы. 17. Электрооптические приборы. 18. Рефрактометрические приборы. 19. Оптико-измерительные приборы. 20. Специальные приборы для оптического производства. 21. Приборы для определения качества поверхностей.  [c.361]

Значение эллипсометрических измерений неуклонно возрастает в связи с увеличением удельного веса изделий микроэлектроники в общем объеме производства приборов. Так, в тонкопленочной полупроводниковой электронике поляризационные оптические методы используются для определения толщин и показателей преломления тонких пленок на кремниевых и германиевых подложках. Относительная простота эллипсометрических методов позволяет проводить поляризационно-оптические измерения на любой стадии технологического процесса, а также исследовать кинетику процесса формирования тонких пленок.  [c.205]

В последнее время в некоторых поляризационных приборах применяется компенсация по методу Сенармона (КСП-7, ИПЛ-451).  [c.39]


Смотреть страницы где упоминается термин Приборы поляризационные : [c.228]    [c.231]    [c.107]    [c.37]    [c.145]    [c.50]    [c.206]    [c.106]    [c.249]    [c.19]   
Приборы для неразрушающего контроля материалов и изделий том 1 (1986) -- [ c.220 ]

Техника в ее историческом развитии (1982) -- [ c.361 ]

Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.341 ]



ПОИСК



ИНТЕРФЕРЕНЦИОННО-ПОЛЯРИЗАЦИОННЫЕ УСТРОЙСТВА И ПРИБОРЫ

Поляризационные и интерферометрические приборы и методы исследования напряжений

Приборы для поляризационных измерений

Ток поляризационный



© 2025 Mash-xxl.info Реклама на сайте