Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптически анизотропные среды - Распространение света

Оптически анизотропия среды характеризуется различной по разным направлениям способностью среды реагировать на действие падающего света. Реакция эта состоит в смещении электрических зарядов под действием поля световой волны. Для оптически анизотропных сред величина смещения в поле данной напряженности зависит от направления, т. е. диэлектрическая проницаемость, а следовательно, и показатель преломления среды различны для разных направлений электрического вектора световой волны. Другими словами, показатель преломления, а следовательно, и скорость света зависят от направления распространения световой волны и плоскости ее поляризации. Поэтому для анизотропной среды волновая поверхность, т. е. поверхность, до которой распространяется за время t световое возбуждение, исходящее из точки L, отлична от сферической, характерной для изотропной среды, где скорость распространения V не зависит от направления.  [c.497]


При изучении распространения света в анизотропной среде нами были введены четыре вспомогательных поверхности — лучевой эллипсоид и оптическая индикатриса, лучевая поверхность и поверхность нормалей. Если нам известна форма одной из этих поверхностей, то путем соответствующих преобразований можно определить форму любой другой. Отметим, что при помощи оптической индикатрисы удается особенно просто рассмотреть оптические свойства кристалла.  [c.258]

Мы уже ознакомились с важнейшими фактами, характеризующими распространение света в кристаллах. Основное отличие кристаллической среды от сред, подобных стеклу или воде, состоит в явлении двойного лучепреломления, обусловленном, как мы видели, различием скорости распространения света в кристалле для двух световых волн, поляризованных во взаимно перпендикулярных плоскостях. С этой особенностью связано и различие в скорости распространения света по разным направлениям в кристалле, т. е. оптическая анизотропия кристаллической среды. Обычно, если среда анизотропна по отношению к одному какому-либо ее свойству, то она анизотропна и по другим свойствам. Однако можно указать случаи, когда среда может рассматриваться как изотропная в одном классе явлений и оказывается анизотропной в другом. Так, кристалл каменной соли обнаруживает изотропию оптических свойств, но механические свойства его вдоль ребра и диагонали различны.  [c.495]

При изучении распространения света в анизотропной среде обычно исходят из уравнений Максвелла. Электромагнитная теория света дает детальное описание всех явлений, наблюдаемых на опыте и связанных с естественной оптической анизотропией. Кроме того, эта теория может связать электрическую, а следовательно, и оптическую анизотропию с молекулярным строением вещества, т. е. с расположением атомов и молекул в кристаллической решетке.  [c.30]

Распространение света в оптически изотропной и анизотропной средах  [c.250]

Оптические свойства в каждой точке анизотропной среды выражаются эллипсоидом показателей преломления с полуосями, равными главным показателям преломления Пу, 2 и щ среды, связанными со скоростями распространения света в этих направлениях [91. Направления полуосей являются главными осями оптической симметрии.  [c.19]


Дихроизм — свойство анизотропных сред по-разному поглощать свет, распространяющийся в разных направлениях, или свет разной поляризации. От направления распространения световой волны зависит, таким образом, не только коэффициент преломления, но и коэффициент поглощения оптических волн. Это явление обусловлено дисперсией (частотным изменением) показателя преломления, которая в анизотропной среде происходит в разных частотных диапазонах — в зависимости от направления распространения света и его поляризации. Дихроизм (в общем случае — плеохроизм) объясняется анизотропией поглощения света.  [c.28]

Рассмотрим механизм образования волновых поверхностей в анизотропной среде. В такой среде от точечного источника распространяются две ортогонально-поляризованные волны.. В случае двухосной среды для обеих волн скорость распространения зависит от направления, так как электрический вектор меняет свою ориентацию относительно оптических осей и волновые поверхности имеют сложную форму. Совокупность волновых поверхностей образована двумя оболочками, пересекающимися между собой в четырех точках, лежащих в воронкообразных углублениях (рис. 2.5.5). Через эти точки и центр проходят две оптические оси, при распространении вдоль которых свет не испытывает двойного лучепреломления. На рис. 2.5.5 изображена только одна из осей 00 двухосного кристалла, а соответственно и одна точка А пересечения оси с волновой поверхностью.  [c.85]

Например, при изучении распространения света в кристаллах (т. е. в задачах кристаллооптики) можно в большинстве случаев считать среду магнитно-изотропной, но электрически анизотропной. При этом вектор напряженности электрического поля Е и вектор электрической индукции 1>, вообще говоря, не будут параллельны. Связь между ними осуществляется посредством тензорной величины — диэлектрической проницаемости Если поместить точечный источник в оптически однородную изотропную среду, то фронт волны, создаваемой таким источником, будет иметь сферическую форму. Форма же волнового фронта в анизотропной среде отлична от сферической и бывает весьма сложной.  [c.103]

Эти уравнения для волновых амплитуд принято называть уравнениями генерации . Для их вывода мы до сих пор ограничивались изотропной средой и волнами с одним направлением поляризации. Однако обычно в приложениях важную роль играют также анизотропные вещества, поскольку в них нелинейные эффекты проявляются уже во втором порядке. Кроме того, как в изотропных, так и в анизотропных веществах наблюдаются эффекты, в которых большое участие принимают компоненты поля с различными направлениями поляризации. В этих общих случаях система уравнений генерации сложным образом зависит от направлений распространения и поляризации отдельных волн. В дальнейшем мы сделаем упрощающие предположения, при которых уравнения генерации для компонент Е. будут подобны уравнениям для изотропной среды при фиксированном направлении поляризации. Вновь предположим, что волновые векторы всех участвующих в процессе волн имеют одно и то же направление, за которое мы выберем ось г лабораторной системы координат. Этого можно достичь, если направить излучение перпендикулярно к соответствующим образом вырезанной поверхности кристалла. Кроме того, мы ограничимся оптически одноосными кристаллами и расположим ось у лабораторной системы координат в плоскости главного сечения, т. е. в плоскости, образуемой направлением распространения луча и оптической осью. Ось х перпендикулярна этой плоскости. При таком выборе осей. -компонента волны с частотой I распространяется как обыкновенная водна с волновым числом = <7о (Л, а /-компонента — как необыкновенная волна с волновым числом ао /) . (Мы обозначаем через волновое число света с направлением поляризации .) Наконец, мы сделаем достаточно часто выполняющееся предположение, что эллипсоид линейного показателя преломления мало отклоняется от сферической формы. При этом предположении оказывается возможным во многих случаях пренебречь  [c.101]


ОПТИЧЕСКАЯ АНИЗОТРОПИЯ — различие оптич. свойств среды, связанное с зависимостью скорости световых волн от направления распространения и их поляризации. О. а. проявляется в двойном лучепреломлении, дихроизме, вращении плоскости поляризации, а также в деполяризации при рассеянии света в среде, в поляри-зов. люминесценции и т. д. Только в исключительных условиях оптич. излучение определённых поляризаций и направлений распространяется в оптически авиао-тропных средах не преобразуясь. В прозрачной оптически анизотропной среде световая волна в общем случае представляет собой суперпозицию двух ортогонально поляризов. волн, имеющих разные скорости распространения.  [c.427]

Распространение света в анизотропных средах имеет ряд особенностей. Известно, что анизотропная среда характеризуется различными свойствами по разным направлениям. Возможна анизотропия любых свойств — механических, электрических, упругих, оптических и т. п. Анизотропия свойств всегда тесно связана с анизотропией строения вещества и часто встречается в разнообразных объектах как природного, так II искусственного происхождения. Мы рассмотрим оптическую анизотропию, т. е. различие оптичес кнх свойств по разным направлениям,. которое наиболее ярко проявляется в кристаллических средах. Распространение света в кристаллах изучает кристаллооптика. Теория и экспериментальные методы кристаллооптики применимы и к анизотропным веществам, не обладающим кристаллической структурой.  [c.30]

СПОСОБНОСТЬ [вращательная — отношение угла поворота плоскости поляризации света к расстоянию, пройденному светом в оптически активной среде излучательная — отношение светового потока, испускаемого светящейся поверхностью, к площади этой поверхности и к интервалу частот, в котором содержится излучение отражательная — отношение отраженной телом энергии к полной энергии падающих на него электромагнитных волн в единичном интервале частот поглощательная— отношение поглощенного телом потока энергии электромагнитного излучения в некотором интервале частот к потоку энергии падающего на него электромагнит-, ного излучения в том же интервале частот разрешающая прибора — характеристика способности прибора (оптического давать раздельные изображения двух близких друг к другу точек объекта спектрального давать раздельные изображения двух близких друг к другу по длинам волн спектральных линий) тормозная — отношение энергии, теряемой ионизирующей частицей на некотором участке пути в веществе, к длине этого участка пути] СРЕДА [есть общее наименование физических объектов, в которых движутся тела или частицы и распространяются волны активная — вещество, в котором осуществлена инверсия населенностей уровней энергии и в результате чего может быть достигнуто усиление электромагнитных волн при их прохождении через вещество анизотропная — вещество, физические свойства которого неодинаковы по различным направлениям гнротронная — среда, в которой существует естественная или искусственная оптическая активность диспергирующая — вещество, фазовая скорость распространения волн в котором зависит от их частоты изотропная — вещество, физические свойства которого одинаковы по всем выбранным в нем направлениям конденсированная—твердая или жидкая среда]  [c.279]

Физическая О. рассматривает проблемы, связанные с процессами испускания света, природой света и световых явлений. Утверждение, что свет есть поперечные ал.-маги, волны, явилось результатом огромного числа эксперим. исследований дифракции света, интерференции света, поляризации света, распространения света в анизотропных средах (см. Кристаллооптика, Оптическая анизотропия]. Совокупность явлений, в к-рых проявляется волновая природа света, изучается в крупном разделе фиа. О.— волновой оптике. Её матем. основанием служат общие ур-ния класснч. электродинамики — Максвелла уравнения. Свойства среды при этом характеризуются макроскодич. материальными константами — значениями диэлектрической проницаемости 8 и магнитной проницаемости р,, входящими в ур-ния Максвелла в виде коэффициентов. Эти значения однозначно определяют показатель преломления среды л = [Лер.  [c.419]

Существует много веществ, оптические свойства которых зависят как от направления распространения, так и от поляризации световых волн. К оптически анизотропным материалам относятся кристаллы, например кальцит, кварц и KDP, а также жидкие кристаллы. Эти материалы характеризуются многими необычными оптическими свойствами, такими, как двойное лучепреломление, оптическое вращение плоскости поляризации, поляризационные эффекты, коническая рефракция, электрооптические и акустооптические эффекты. Анизотропные кристаллы используются во многих оптических устройствах, например в призменных поляризаторах, поляризационных пластинах и в двулучепреломляющих фильтрах. Анизотропные нелинейные вещества используются также для достижения фазового синхронизма при генерации второй гармоники. Таким образом, очевидно, сколь важным для практического применения этих свойств является четкое представление о процессе распространения света в анизотропных средах. Данная глава целиком посвящена изучению распространения электромагнитного излучения в этих средах.  [c.78]

Вследствие зависимости дисперсии света от поляризации (или от направления распространения света) в анизотропной дихроич-ной среде возникает анизотропная окраска кристалла или оптической текстуры, что используется, например, для получения цветных изображений на плоских экранах. Как и двулучепреломление, дихроизм используется для получения линейно поляризованного света из неполяризованных световых пучков (с этой целью обычно применяются дихроичные полимерные пленки — поляризаторы). Дихроизмом некоторых кристаллов и текстур можно управлять с помощью внешних полей.  [c.28]


Гирация, или вращение плоскости поляризации света, является еще одним примером оптических эффектов в анизотропных кристаллах. Плоскость колебания поляризованного светового луча по мере распространения его в оптически активном кристалле изменяет свою ориентацию — вращается. Величина угла гирации зависит от длины пути оптического луча в кристалле и от структуры кристалла. Наибольшей оптической активностью обладают жидкие кристаллы. Объясняется гирация асимметрией электронного строения оптически активной среды поляризация светового луча вынужденно следует за винтовым структурным расположением связанных в молекулах электронов — вторичных осцилляторов, возбуждаемых в кристалле проходящим светом. В некоторых кристаллах гирация может возникать или изменяться во внешних (управляющих) полях.  [c.28]

Выведем основное соотношение, следующее из свойств оптической индикатрисы и позволяющее выполнять расчеты распространения света в анизотропной среде. Пусть направление распространения волны ОР (см. рис. 2.5.2) составляет угол 0 с оптической осью X (рис. 2.5.7,6). Для оптически отрицательной среды сечение, перпендикулярное к ОР, представляет собой эллипс с осями По и , где пе переменный показатель преломления, зависящий от 0 Пе < йе < По). Рассмотрим эллиптическов сечение, содержащее оптическую ось и направление Р. Это се-  [c.89]

До сих пор рассматривались явления в изотропной среде, т. е. в такой, в коюрой- все свойства одинаковы по всем направлениям. Интересные оптические явления наблюдаются в среде, характеризующейся анизотропией, г. е. различием свойств по разным направлениям. Такими анизотропными средами являются кристаллические среды — кристаллы. Наиболее важное явление при распространении света в анизотропной среде — двойное лучепреломление. При этом падающий на анизотропное тело К (кристалл) луч света делится на два луча, имеющих поляризацию во взаимно перпендикулярных направлениях. На рис. 16. 25 изображено  [c.338]

Как известно, при распространении света в гиротроп-ных изотропных средах в рассматриваемой области частот происходит вращение плоскости поляризации, а в анизотропных средах — эллиптическое двупреломле-ние (вращение происходит лишь в направлении оптической оси).  [c.150]

Физическая оптика рассматривает проблемы, связанные с природой света и световых явлений. Утверждение, что свет есть поперечные эл.-магн, волны, основано на результатах огромного числа эксперим. исследований дифракции света, интерференции света, поляризации света и распространения света в анизотропных средах (см. Кристаллооптика, Оптическая анизотропия). Совокупность явлений, в к-рых  [c.489]

П. п. связан выражением п — У Абс. П. п. среды определяется поляризуемостью составляющих её ч-ц (см. Клаузиуса — Моссотти формула, Лоренц — Лоренца формула. Рефракция молекулярная), а также структурой среды и её агрегатным состоянием. Для сред, обладающих оптической анизотропией (естественной или индуцированной), П. п. зависит от направления распространения излучения и состояния его поляризации (см. Поляризация света). Типичными анизотропными средами являются мн. кристаллы (см. Кристаллооптика). Среды, поглощающие излучение, описывают комплексным П. п. /г=дг(1+гх), где член, содержащий только п, соответствует направленному пропускания, а х = kkjAn харак-  [c.584]

Акустооптичеекое взаимодействие в оптических волноводах. В оптич. волповодах, представляющих собой тонкий слой прозрачного материала на поверхности подложки (т. н. планарные волноводы), возникает взаимодействие оптич. волноводных мод с поверхности ными акустическими волнами (ПАВ), обычно рэлеев-скими. В результате появляется свет, распространяющийся вдоль плоскости волновода, но отклонённый от своего первоначального направления. Для эфф. дифракции необходимо, чтобы в н.поскости волновода световые лучи падали на пучок ПАВ под соответствующим брэгговским углом. Поскольку даже в изотропной волноводной системе скорости распространения разных оптич. мод отличны друг от друга, то при разл. углах падения светового пучка возможна как дифракция света без изменения номера моды, аналогичная обычной брэгговской дифракции, так и дифракция, при к-рой падающий и дифрагированный свет принадлежит к разным волноводным модам. В последнем случае законы дифракции аналогичны закономерностям анизотропной дифракции, возникающей при взаимодействии объемных волн в двулуче-преломляющей среде. В волноводных системах распределение как эл.-магн. полей для оптич. моды, так и поля деформации в ПАВ неоднородно в поперечном сечении волновода. Эффективность акустооптич. диф-  [c.49]


Смотреть страницы где упоминается термин Оптически анизотропные среды - Распространение света : [c.30]    [c.179]    [c.27]    [c.144]    [c.511]    [c.28]    [c.321]    [c.149]    [c.653]    [c.17]    [c.207]    [c.144]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.250 ]



ПОИСК



Анизотропность

Оптическая среда

Оптически анизотропные среды

Распространение света в анизотропных средах

Свет Распространение в средах

Среда анизотропная



© 2025 Mash-xxl.info Реклама на сайте