Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефекты в сварных и паяных соединениях

ДЕФЕКТЫ В СВАРНЫХ И ПАЯНЫХ СОЕДИНЕНИЯХ  [c.242]

Капиллярный контроль. Капиллярный контроль применяется для выявления наружных дефектов сварных и паяных соединений трещин, свищей, расслоений и т. п. Один из вариантов такого контроля — люминесцентный. Сущность его заключается в том, что деталь на 20—30 мин погружают в индикаторную жидкость (например, смесь 85% керосина и 15% трансформаторного масла). Трещины, поры и другие дефекты подобно капиллярам втягивают в себя индикаторную жидкость и хорошо ее удерживают. Деталь вытирают насухо и на ее поверхность наносят сорбент — тальк или порошок магнезии. Сорбент через определенное время вытягивает на поверхность часть индикаторной жидкости, оставшейся в дефектах и не удаленной при вытирании детали. Если теперь поверхность детали облучить ультрафиолетовыми лучами, то индикаторная жидкость, поглощенная сорбентом, будет ярко люминесцировать, свидетельствуя о наличии дефекта.  [c.551]


Сварные и паяные соединения считают качественными, если в них нет дефектов и их механические свойства удовлетворяют требованиям, предъявляемым в соответствии с условиями эксплуатации узла или конструкции. Качество сварных и паяных соединений обеспечивают предварительным контролем материалов и заготовок перед сваркой, текущим контролем за процессом сварки и окончательным контролем готовых сварных или паяных соединений.  [c.365]

Если в технических условиях на контролируемое изделие (деталь) нет указаний о допустимых или недопустимых дефектах, то при оценке качества и разбраковке изделий необходимо учитывать влияние технологических дефектов на механические (эксплуатационные) свойства контролируемых деталей [39, 56, 57]. Методы оценки влияния дефектов на эксплуатационные свойства контролируемых объектов должны включать характеристику влияния дефектов на прочность деталей в связи с чувствительностью сварного и паяного соединения к дефектам, расположением и ориентировкой их в поле напряженного состояния и условиями работы (режим, степень и длительность нагрузки, влияние среды, характер и концентрация напряжений и т. д.).  [c.74]

Голография — это процесс регистрации и воспроизведения объемных изображений объектов, основанный на интерференции и дифракции волн. Оказалась возможной реализация голографического процесса и в ультразвуковом контроле после разработки методов ультразвуковой голографии. Возможность реализации голографии в ультразвуке базируется на свойстве когерентности УЗК, получаемых с помощью обычных ультразвуковых излучателей. Поскольку УЗК легко проникают в оптически непрозрачные среды, имеется возможность получать изображения внутренней структуры объектов, в том числе изображения дефектов сварных и паяных соединений. Таким образом, по-  [c.209]

Качество изготовления продукции в серийном производстве обеспечивается выполнением требований чертежа. Однако в некоторых конструкциях (например, в сварных, клеевых и паяных соединениях, в деталях из композиционных материалов) прямой контроль качества весьма затруднителен. Кроме того, в процессе изготовления возможны скрытые дефекты в результате воздействий, не оговоренных технологическим процессом. Поэтому для ответственных и сложных узлов предусматривают контроль прочности непосредственно в процессе изготовления опрессовка каждого узла нагрузкой, превышающей эксплуатационное значение, периодические испытания узлов до разрушения.  [c.38]


Дефекты в соединениях бывают двух типов внешние и внутренние. В сварных соединениях к внешним дефектам относят наплывы, подрезы, наружные непровары п несплавления, поверхностные трещины и поры (рис. 5.55, а—г) к внутренним— скрытые трещины и поры, внутренние непровары н несплавления, шлаковые включения II др. (рис. 5.55, д—ж). В паяных соединениях внешними дефектами являются наплывы и натеки припоя, неполное заполнение шва припоем внутренни.ми — поры, включения флюса, трещины и др.  [c.242]

Нарушения герметичности этих изделий могут быть обусловлены неплотностью материала, из которого изготовлены их узлы и элементы, а также неплотностью соединений этих узлов и элементов друг с другом. Влияние неплотностей материала обычно учитывают и устраняют на стадии проектирования изделий, подбирая необходимую марку материала, его толщину и т. д. Поэтому нарушения герметичности происходят в основном в соединениях как разъемных (резьбовых, фланцевых, ниппельных и др.), так и неразъемных (сварных, паяных, клееных, клепаных и др.). Требуемую герметичность соединений обеспечивают совершенствованием их конструкции и технологических процессов сборки, сварки и т. п. Однако возможны различного рода технологические дефекты, приводящие к нарушению герметичности соединений. Эти дефекты выявляют методами контроля течеисканием, после чего устраняют, дорабатывая (уплотняя) соединение.  [c.224]

Комплексный контроль соединений в условиях эксплуатации и ремонта изделий. В процессе эксплуатации изделий в сварных, паяных или клееных узлах могут образоваться специфические эксплуатационные дефекты, по характеру отличающиеся от дефектов, возникающих при изготовлении соединений. К основным эксплуатационным дефектам следует отнести усталостные трещины и повреждения, коррозионные поражения.  [c.294]

Контролю эхо-методом подвергаются слитки, фасонное литьё, поковки, штамповки, плиты, листы, проволока, трубы, прутки, рельсы, а также сварные, клеёные, заклёпочные, паяные соединения и др. При этом обнару-я иваются поверхностные (напр., усталостные трещины) п внутренние дефекты (расслоения, шлаковые включения и др.) в заготовках и изделиях различной формы и габаритов из металлич. и неметаллич. материалов. Могут быть обнаружены зоны нарушения однородности кристаллич. структуры и зоны коррозионного поражения металлич. изделий, а также изме-  [c.109]

Специализированные дефектоскопы. Эти приборы служат для обнаружения дефектов в изделиях определенной номенклатуры (железнодорожных рельсах, металлических конструкциях, трубопроводах, прутках и т. д.), в соединениях (сварных, паяных или клеевых), в отдельных (критических) элементах высоконагруженных машин в условиях эксплуатации (лопатках турбин и компрессоров, валах подъемного оборудования и т. д.).  [c.59]

Примерами эффективного применения капиллярных методов контроля неразъемных соединений могут служить обнаружение поверхностных дефектов сварных соединений в химическом машиностроении, контроль паяного режущего инструмента и некоторые другие.  [c.206]

Основные этапы и содержание этой работы следующие установление норм отбраковки соединений исходя из прочности, характеристик и условий нагружения изделия в эксплуатации выбор методов неразрушающего контроля и их сочетаний с учетом специфических особенностей методов изготовление образцов соединений с характерными дефектами и эталонов чувствительности неразрушающий контроль образцов соединений выбранными методами разрушающие испытания образцов и определение надежности и достоверности методов неразрушающего контроля неразрушающий контроль готового сварного, паяного или клееного узла (детали) с учетом результатов контроля и испытаний образцов разрушающие испытания готового узла (детали) установление чувствительности, производительности и режимов контроля соединений каждым из выбранных методов разработка технологических карт контроля, определяющих область и оптимальный порядок применения каждого нз выбранных методов определение ожидаемой экономической эффективности внедрения выбранного сочетания методов неразрушающего контроля (окончательную экономическую эффективность подсчитывают после внедрения этих методов).  [c.281]


Испытания I—листовых материалов на раздвоения, 2—плакированных листовых материалов на дефекты соединений, 3—котлов, труб и т. п. на раздвоения и трещины, 4—полосовых и листовых материалов на ликвации, текстуры и т. п., 5—тянутых изделий на прочность хромового покрытия, 6—внутренней поверхности цилиндров на прочность хромового покрытия, 7—различных профилированных деталей на ошибки в размерах, 8—стержней на трещины, разрывы и т. п., 9—турбинных лопаток на трещины, 0—подшипников на прочность соединения и однородность заливки, И—котлов и труб на качество сварных швов, /2—сварных листовых конструкций на качество швов, 13—паяных деталей на целость пайки и иа трещины-, 14—точечной сварки. /5—сварных конструкций рамного типа, 16—изоляторов на трещины и раковины, 17—проводов на трещины и разрывы, 18—рельсов, сваренных автогеном, на целость сварных соединений, 19—мест спайки проводов на целость спайки, 20—клапанов двигателей на целость, 2/—припаянных покрытий контактов.  [c.440]

Готовые сварные и паяные соединения в зависимости от назначения и ответственности конструкции подвергают приемочному контролю внешнему осмотру для выявления поверхностных дефектов и обмеру сварных швов испытаниям на плотность, магнитному контролю, просвечиванию рентгеновским и гамма-нзлучением, ультразвуком для выявлений внутренних дефектов.  [c.243]

Окончательный контроль готовых сварных и паяных соединений. Готовые сварные соединения подвергают следующим видам контроля 1) внешнему осмотру для выявления поверхностных дефектов и обмеру сварных швов 2) испытаниям на плотность, магнитному контролю, просвечиванию рентгеновскими и гамма-лучами, ультразвуком и др. для выявлений внутренних дефектов. Паяные соединения подвергают внешнему осАютру, испытаниям на плотность, магнитному и ультразвуковому контролю. Вид контроля и относительную протян енность контролируемых швов выбирают в зависимости от назначения и ответственности сварпой или паяной конструкции.  [c.367]

Выявление дефектов в слитках, литых изделиях, сварных и паяных соединениях Выявление дефектов, связанных с нарушением целостности или взаимного расположения деталей в узлах, механизмах или усфойствах  [c.86]

Гамма-дефектоскопы. Значительный объем контроля сварных и паяных соединений осуществляется с помощью гамма-дефекто-скопов (С. В. Румянцев, А. Н. Майоров, В. Г. Фирстов и др.). Гамма-дефектоскопы заряжают радиоизотопными источниками. Основные, важные для дефектоскопии характеристики радиоизотопных источников — энергетический спектр излучения, выход излучения, период полураспада и геометрические размеры источников.  [c.89]

На шлифованных поверхностях образцов (шлифах) оценивают макро- и микроструктуру. Для лучшего выявления структуры шлифы обрабатывают (травят) специальными реактивами. Макрошлифы рассматривают без увеличения или при небольшом увеличении с помощью лупы. При этом выявляют глубину проплавления, зоны сварного шва, наличие дефектов, скопления серы и фосфора. Для изготовления микрошлифов поверхность дополнительно полируют. После этого изучают поверхность шлифа под микроскопом без травления при увеличении примерно в 100 раз для выявления трещин, непрова-ров (непропаев), пор, неметаллических включений, пережога (неисправимый дефект структуры сталей - окисление границ зерен при нагреве до температуры выше 1300 "С). Затем для выявления более мелких дефектов и особенностей микроструктуры отдельных зон сварного или паяного соединения шлифы протравливают специальными реактивами, состав которых и режимы травления зависят от материала образца, и изучают под микроскопом при увеличении в  [c.343]

Дефекты в зависимости от причин их появления могут быть конструктивнылш, производственными (ремонтными), эксплуатационными. Мы ограничимся рассмотрением производственных дефектов, образующихся в процессе плавления металла, заливки его в изложницы, кристаллизации, охлаждения изготовления отливок обработки металлов давлением в результате термической, химико-термической, механической обработки в сварных, паяных, клепаных соединениях металлов. Причинами возникновения дефектов являются несовершенство технологических процессов производства или восстановления деталей, нарушение режимов обработки, неэффективность методов контроля качества, несоблюдение режимов и условий эксплуатации, регламентированных нормативнотехнической документацией. Дефекты в полуфабрикатах и готовых изделиях могут образоваться при хранении, транспортировке вследствие нарушения правил упаковки, укупорки, консервации и т. д.  [c.536]

Магнитный контроль основан на намагничивании сварных или паяных соединений и обнаружении полей магнитного рассеивания на дефектных участках. Изделие намагничивают, замыкая им сердечник электромагнита или помещая его внутрь соленоида. В зависимости от способа обнаружения потоков рассеивания различают методы магнитного порошка, индукционный и магнитографический. При методе магнитного порошка на поверхность соединения напосят порошок железной окалины или его масляную суспензию. Изделие слегка обстукивают для облегчения подвижности частиц порошка. По скоплению порошка обнаруживают дефекты, залегающие на глубине до 6 мм. При индукционном методе магнитный ноток в изделии наводят электромагнитом переменного тока. Рассеяние поля обнаруживают с помощью искателя, в катушке которого индуктируется э. д. с., вызывающая оптический или звуковой сигнал на индикаторе. При магнитографическом методе на шов накладывают и прижимают фе])ромагиитную ленту, на которой фиксируется магнитное изображение шва. Затем это изображение воспроизводится на экране электронно-лучевой трубки.  [c.368]


Гальванические покрытия для защиты деталей со сварными соединениями от коррозии применяют только при условии непрерывности сварного шва по всему периметру, исключающего затекание электролита в шов. При этом необходимо тщательно промывать детали после подготовительных и основных операций нанесения покрытий. Гальванические покрытия применяют и для деталей, имеющих паяные соединения. Если в процессе подготовки поверхности перед нанесением покрытий обнаруживают дефекты паяных швов, необходимо принять меры для их устранения, например сделать дополнительную пропайку.  [c.40]

При реи]епни вопроса о целесообразности кошроля сварных, паяных и клееных соединений именно ксерораднографическим методом необходимо учитывать многие факторы, главные из которых — чувствительность к дефектам, производительность и стоимость контроля. По двум последним факторам первенство по сравнению с радиографией несомненно принадлежит ксерорадиографии, что касается чувствительности к дефектам, то переход к ксерорадиографии, как правило, целесообразен в тех случаях, когда радиографический контроль проводился до этого на пленку РТ-1.  [c.139]

Общие принципы разработки методики контроля. Разработка методики дефектоскопии или проектирование установки для автоматического контроля начинается с выбора схемы контроля метода контроля, типа волн, поверхности, через которую вводятся УЗК, угла ввода. Дня контроля металла применяют в основном эхотеневой и зеркально-теневой методы. Предпочтение отдается эхо-методу как наиболее чувствительному и помехоустойчивому. Теневым методом контролируют тонкие, слоистые (например, паяные) металлы с простой формой поверхности. Как правило, он требует доступа к двум поверхностям изделия. Зеркально-теневой метод применяют при доступе к одной поверхности, когда дефекты не дают эхо-сигнала (например, из-за наличия мертвой зоны или в связи с неблагоприятной ориентацией дефекта), но ослабляют донный сигнал. Дельта-, дифракционно-временной и эхо-зеркальный методы помогают обнаруживать вертикальные дефекты сварных соединений. Сквозной эхо-метод применяют для автоматического контроля толстых листов.  [c.252]


Смотреть страницы где упоминается термин Дефекты в сварных и паяных соединениях : [c.378]    [c.269]    [c.593]    [c.287]    [c.254]   
Смотреть главы в:

Технология конструкционных материалов  -> Дефекты в сварных и паяных соединениях

Технология конструкционных материалов  -> Дефекты в сварных и паяных соединениях



ПОИСК



Дефекты паяных соединений

Дефекты сварных соединени

Дефекты сварных соединений

Паяние

Сварные Дефекты

Сварные и паяные соединения

Соединение Дефекты

Соединения паяные

Швы паяные



© 2025 Mash-xxl.info Реклама на сайте