Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спектральный металлов

Химический или спектральный анализ показывает в твердых растворах наличие двух элементов или более, тогда ка по данным металлографического анализа такой сплав, как и чистый металл, имеет однородные зерна (рис. 80). Рентгеновский анализ обнаруживает в твердом растворе, как и у чистого металла, только один тип решетки.  [c.100]

Чтобы удалить большинство растворенных в вольфраме газов, необходимо нагреть его в вакууме до температуры около 2200 °С и откачивать в течение примерно двух часов (здесь и в -последующем при обсуждении изменений в вольфраме приводится истинная температура, а не спектральная яркостная температура). После такой обработки основная часть оставшегося в стеклянной оболочке лампы газа будет появляться из молибденовых или никелевых вводов, которые остаются при более низкой температуре, или из стекла. Нагретый вольфрам выделяет следующие газы (в порядке их концентрации) азот, окись углерода и водород. Присутствие их в твердом растворе всегда увеличивает электрическое сопротивление металла. Если после отпайки лампы имеет место чрезмерная дегазация вольфрама, обычно наблюдается гистерезис соотношения со-противление/температура. Этот гистерезис происходит следующим образом. При высоких температурах газ выделяется из глубины металла диффузией к поверхности и испарением. При охлаждении тот же газ, если он не был удален откачкой или абсорбирован в другом месте, конденсируется на поверхности вольфрама и начинает диффундировать обратно в металл, увеличивая тем самым его сопротивление. Скорость, с которой происходят все эти процессы, является экспоненциальной функцией температуры. Для ламп, используемых в области до 1800 °С, дрейф сопротивления при охлаждении, скажем до 1200 °С, может происходить в пределах нескольких дней как результат недостаточной дегазации в начальной стадии или последующей течи.  [c.353]


Спектральный анализ проводят для установления марки используемых сварочных материалов, определения состава наплавленного металла шва и основного металла свариваемых элементов, из которых изготовлен обследуемый аппарат, с целью подтверждения соответствия легирования требованиям проекта и инструкций по сварке или НТД.  [c.221]

Излучательная способность металлов. Качественное изменение спектральной излучательной способности поверхностей изучили достаточно хорошо. Для металлов она уменьшается с увеличением длины волны. Что касается теоретического вычисления функции е(>., Т) для реальных тел, то удовлетворительные результаты, подтверждаемые экспериментом, дает соотношение Друде, полученное с помощью классической теории Максвелла для ИК-области спектра  [c.28]

В табл. 1-1 6] содержатся данные о спектральной степени черноты некоторых металлов и диэлектриков, которые подтверждают указанные выше общие тенденции, В табл. 1-2 сведены экспериментальные данные [24—26] об интегральной степени черноты различных материалов.  [c.34]

Для металлов (гелиоприемники, как правило, изготовлены из металла) с увеличением длины волны спектральная лучеиспускательная способность падает, а отражательная способность увеличивается. В длинноволновой области спектра металл обладает значительным отражением. Если на металле создать тонкую пленку, сильно поглощающую длинноволновые лучи, то можно получить идеальную для теплового гелиоприемника поверхность, так как видимые и близкие инфракрасные лучи, на которые приходится большая часть солнечной энергии, поглощаются пленкой (покрытие имеет высокое значение е, а/гл ). Учитывая то, что температуры гелиоприемников при использовании концентраторов солнечной энергии достигают 1000 К, для этих целен необходимо применять высокотемпературный класс покрытий.  [c.217]

Спектральный анализ широко применяется при поисках полезных ископаемых для определения химического состава образцов руды. В промышленности спектральный анализ позволяет контролировать составы сплавов и примесей, вводимых в металлы  [c.277]

Особенно замечательно поглощение, обнаруживаемое при невысоком давлении в парах большинства металлов, представляющих собой собрание атомов, расположенных на значительном расстоянии друг от друга, т. е. практически изолированных. Коэффициент поглощения таких паров везде очень мал (близок к нулю) и лишь для очень узких спектральных областей (шириной в несколько сотых ангстрема) обнаруживает резкие максимумы. Так, для паров натрия коэффициент поглощения может быть изображен в виде кривой, показанной на рис. 28.14. При тщательно контролируемых условиях опыта удавалось наблюдать в спектре поглощения паров Na до 50 таких пар (дублетов), которые расположены тем ближе, чем короче длина волны.  [c.564]


Эффект Зеемана удалось наблюдать и на линиях поглощения обратный эффект Зеемана). Если абсорбирующее вещество, на-.пример пары металла, дающие резкую спектральную линию поглощения ), поместить между полюсами электромагнита, то вид  [c.628]

Опыт показал, однако, что ход зависимости, изображенный на рис. 32.7, не всегда имеет место. У ряда металлов, особенно щелочных, для которых красная граница лежит далеко в видимой и даже в инфракрасной области спектра и которые, следовательно, чувствительны к широкому интервалу длин волн, наблюдается следующая особенность сила тока имеет резко выраженный максимум для определенного спектрального участка, быстро спадая по обе его стороны селективный, или избирательный, фотоэффект, рис. 32.8). Селективность фотоэлектрических явлений очень напоминает резонансные эффекты. Дело происходит так, как будто электроны в металле обладают собственным периодом колебаний, и по мере приближения частоты возбуждающего света к собственной частоте электронов амплитуда колебаний их возрастает и они преодолевают работу выхода.  [c.644]

В этих опытах выясняется и другая важнейшая черта температурного излучения. Спектральный состав излучения, соответствующего данной температуре, для различных хорошо поглощающих веществ (например, окислов различных металлов, угля и т. д.) практически одинаков, но для прозрачных тел излучение может иметь заметно отличный состав. Так, нагревая кусок стали, мы при температуре около 800° С увидим яркое вишнево-красное каление, тогда как прозрачный стерженек плавленного кварца при той же температуре совсем не светится, не испускает видимых (в частности, красных) лучей. Таким образом, обнаруживается большая способность к излучению тел, хорошо поглощающих. Это обстоятельство определяет условия обмена лучистой энергией, ведущего к установлению теплового равновесия между телами.  [c.685]

Отсюда ясно, что для тел, характер излучения которых сильно отличается от излучения черного тела (например, для тела с ясно выраженными областями селективного излучения), понятие цветовой температуры не имеет смысла, ибо цвет таких тел можно только очень грубо воспроизвести при помощи черного тела. В тех случаях, когда определение цветовой температуры возможно (так называемые серые тела , например, уголь, окислы, некоторые металлы), для ее отыскания необходимо произвести исследование распределения энергии в спектре при помощи соответствующих спектральных приборов. Рис. 37.2 воспроизводит результаты такого исследования для Солнца одновременно на нем нанесены кривые распределения для черного тела при температурах 6000 и 6500 К. Рис. 37.2 показывает, что отождествление Солнца с черным телом  [c.703]

В начале 60-х гг. были созданы баллоны газоразрядных ламп из поликристаллического оксида алюминия, которые могут работать при значительно более высоких температурах, чем кварцевое стекло, и хорошо противостоять воздействию разряда в парах щелочных металлов. Созданные в таких баллонах натриевые лампы имеют световую отдачу 130—150 лм/Вт, хороший спектральный состав излучения и малые габариты при большой мощности.  [c.155]

Рис. 26.7. Спектральные характеристики фотокатодов из чистых металлов Рис. 26.7. <a href="/info/741749">Спектральные характеристики</a> фотокатодов из чистых металлов
Важное значение имеет спектральная характеристика фотокатода, т. е. зависимость спектральной чувствительности у от длины световой волны Я. Экспериментальные спектральные характеристики для некоторых чистых металлов приведены на рис. 26.7. Из рисунка видно, что, начиная с красной границы, с уменьшением л происходит возрастание чувствительности фотокатода. У металлов щелочной группы и их сплавов, а также у сложных фотокатодов (например, сурьмяно-цезиевого и кислородно-цезиевого), для которых красная граница лежит далеко в видимой и даже в инфракрасной областях и которые, следовательно, чувствительны к широкому интервалу длин волн, спектральная характеристика имеет другой вид. На ней обнаруживается резкий максимум в определенной области спектра (рис. 26.8). Такой фотоэффект называется селективным, или избирательным. Полное объяснение этого явления дается современной квантовой теорией.  [c.162]


Для объяснения спектральной зависимости фотоэлектронной эмиссии металлов обратимся к энергетической диаграмме на рис 7.4, а. В левой половине рисунка (слева от вертикали АА) представлены энергетические состояния электрона в металле штриховкой показаны состояния в зоне проводимости, заполненные электронами. В правой половине рисунка показан так называемый уровень вакуума  [c.162]

Коэффициент отражения К проявляет зависимость от коэффициента поглощения а, т. е. с ростом поглощения растет и отражение. Этим объясняется сильное отражение света металлами. Следовательно, если в некотором спектральном интервале вещество сильно поглощает свет, то оно в-этом же интервале сильно отражает его. Но отражение су-  [c.156]

Химический анализ показывает, что кристаллы, окра-щенные путем нагревания в парах щелочного металла, содержат избыточное по сравнению со стехиометрией количество атомов щелочного металла (около 10 —10 см" ), причем наблюдается соответствие полного спектрального поглощения в F-полосе количеству избыточных атомов, определенных путем химического анализа.  [c.166]

К. При этом возбуждаются спектральные линии практически всех химических элементов. Для многих из них, в основном для металлов, преимущественно возбуждаются линии ионов искровые спектры). Стабильный искровой разряд, получаемый с помощью специальных генераторов искры, применяется для количественного спектрального анализа.  [c.7]

В качественном анализе применяются как дуга постоянного тока, так и активизированная дуга переменного тока. Металлы могут анализироваться непосредственно в виде электродов дуги. Не проводящие электрический ток вещества, обычно анализируются в дуге с угольными электродами. Способы внесения их в разряд весьма разнообразны. Например, небольшая навеска 10—20 мг порошкообразной пробы помещается в углубление угольного стержня, который и является одним из электродов дуги. Вторым электродом служит также угольный стержень, конец которого имеет форму конуса. Для изготовления электродов применяются специальные, очищенные от загрязнений прокаливанием при высокой температуре, угольные стержни или спектрально чистый трафит.  [c.30]

Рис.. 25.15. Спектральные характеристики квантового выхода ФЭ для фотокатодов на основе антимонидов щелочных металлов Рис.. 25.15. <a href="/info/741749">Спектральные характеристики</a> <a href="/info/191837">квантового выхода</a> ФЭ для фотокатодов на основе антимонидов щелочных металлов
Рис. 25.19. Спектральные характеристики квантового выхода ФЭ для иодидов щелочных металлов [16] Рис. 25.19. <a href="/info/741749">Спектральные характеристики</a> <a href="/info/191837">квантового выхода</a> ФЭ для иодидов щелочных металлов [16]
Таблица 31.26. Спектральный коэффициент теплового излучения легких металлов [46] Таблица 31.26. Спектральный <a href="/info/787">коэффициент теплового излучения</a> легких металлов [46]
Таблица 31.29 Спектральный коэффициент теплового излучения тугоплавких металлов [1SJ Таблица 31.29 Спектральный <a href="/info/787">коэффициент теплового излучения</a> тугоплавких металлов [1SJ
Таблица 31.31. Спектральный коэффициент теплового излучения цветных металлов и их сплавав [46] Таблица 31.31. Спектральный <a href="/info/787">коэффициент теплового излучения</a> <a href="/info/1611">цветных металлов</a> и их сплавав [46]
Таблица 31.34. Спектральный коэффициент теплового излучения благородных металлов [46] Таблица 31.34. Спектральный <a href="/info/787">коэффициент теплового излучения</a> благородных металлов [46]
Таблица 31.57. Спектральный коэффициент теплового излучения оксидов металлов и сплавов для длины волны 0,65 мкм [56] Таблица 31.57. Спектральный <a href="/info/787">коэффициент теплового излучения</a> <a href="/info/6673">оксидов металлов</a> и сплавов для длины волны 0,65 мкм [56]

Исследование спектров более сложных атомов показало, что частоты линий их излучения также представляются в виде разностей спектральных термов, характерных для данного атома, но формулы для термов бывают несколько сложнее, чем формула (13.6) для атома водорода. Наиболее простыми термами, похожими на термы атома водорода, являются термы щелочных металлов  [c.79]

Д. С. Рождественский высказал гипотезу, что спектральные дублеты и триплеты возникают в результате расщепления уровней валентного электрона под влиянием магнитного поля, образованного остальными электронами. Действительно, как выяснилось впоследствии, природа спектральных дублетов и триплетов носит магнитный характер, но предположение Рождественского, что магнитное воздействие на валентный электрон вызвано лишь внутренними электронами, не согласуется с симметрией атомного остова щелочных металлов.  [c.58]

Спектральные характеристики нейтральных атомов щелочных металлов  [c.134]

Нитриды — соединения металлов и других элементов непосредственно с азотом. Азот, составляющий основную часть воздуха, всегда в какой-то степени участвует в процессах сварки металлов плавлением, и так как его присутствие легко определяется методами аналитической химии и спектрального анализа, то по содержанию азота в наплавленном металле судим о степени защиты зоны сварки от окружающей воздушной атмосферы. При высоких температурах азот реагирует со многими элементами. Так, s-металлы дают нитриды, которые можно рассматривать как производные аммиака NasN MgaN2 и т.д., р-эле-менты образуют промышленно важные нитриды. Например, боразон, или эльбор, BN (АН°=—252,6 кДж/моль s° = = 14,8 Дж/ моль- К), плотность 2,34 г/см 7 пл=3273 К) представляет собой очень твердый материал, почти не уступающий по твердости алмазу нитрид кремния Si3N4 [АН — = —750 кДж/моль = 95,4 Дж/(моль-К), Г л = 2273 К (возгонка)] — полупроводник (Д = 3,9В) нитрид алюминия AIN разлагается водой.  [c.343]

Химический состав металла, отобранного согласно ГОСТ 7565-81 и ГОСТ 7122-81, определяют стандартными методами аналитического или спектрального анализа. При исследовании макрошлифов основного металла определяют наличие или отсутствие микро- и макрорасслоений, НВ и других дефектов. Выявляют наличие и размеры дефектов металла сварных соединений и проверяют соответствие качества сварных швов нормативным требованиям [ИЗ].  [c.163]

Излучение изолированных атомов, например атомов разреженного одноатомного газа или пара металла (На, Н ), отличается наибольшей простотой. Электроны, входящие в состав таких атомов, находятся под действием внутриатомных сил и не испытывают возмущающего действия со стороны окружающих удаленных атомов. Спектры подобных газов состоят из ряда дискретных спектральных линий разной интенсивности, соответствующих различным длинам волн. При исследовании газов, состоящих из многоатомных молекул, спектр получается более сложным. Так, например, в спектре водорода (На) наряду с отдельными, довольно удаленными друг от друга линиями наблюдается большое число тесно расположенных линий (так называемый многолинейчатый или полосатый спектр водорода).  [c.711]

При обсуждении спектра водорода упоминалось, что в нем наряду с дискретными спектральными линиями, составляющими серии, наблюдается ряд полос, которые при исследовании приборами с достаточной разрешающей способностью расчленяются на ряд тесно расположенных друг около друга линий, образуя так называемый многолинейчатый, или полосатый, спектр. Подобной особенностью отличаются и спектры других газов, молекулы которых состоят из двух или нескольких атомов. Наоборот, для одноатомных газов (благородные газы, пары металлов) характерны только линейчатые атомные спектры. Правда, при значительном давлении пары металлов (например Hg, 2п и др.), равно как и благородные газы, также излучают полосатые спектры, но, как показывают разнообразные исследования, при этих условиях в парах образуются нестойкие соединения типа Hg2, Пег, HgH, Сзо и т. д., т. е. молекулы, с существованием которых и связано излучение полосатых спектров.  [c.744]

В магнитном поле происходит расщепление спектральных линий не только при излучении света, но и при его поглощении. Если вещество, например пары металла, поглощающие в узком спектральном интервале, поместить между полюсами электромагргита, то при включении магнитного поля вид спектра поглощения изме-  [c.108]

Спектральная зависимость фотоэлектронной эмиссии металлов. Одной из важнейших характеристик фотоэмиттера является его квантовая эффективность Y. Это есть вероятность испускания электрона данным фотоэмиттером при падении на его поверхность одного фотона определенной энергии. Пусть на фотоэмиттер падает в единицу времени п таких фотонов. Если пЗ>1, то число электронов п , испускаемых рассматриваемым фотоэмиттером в единицу времени, равно  [c.161]

Измеряя квантовый выход У для разных значений энергии фотона %(л, выявляют для данного фотоэмиттера спектральную зависимость фотоэлектронной эмиссии. На рис. 7.3 в качестве примера приведена зависимость У (Ьы) для нескольких металлов — калия, индия, висмута. Рисунок хорошо иллюстрирует закономерности, проявляющиеся в спектральной зависимости фотоэлектронной эмиссии металлов.  [c.161]

Выбор спектрографа. Выбор типа спектрографа определяется спектральной областью, в которой располагаются аналитические линии, и степенью сложности спектра исследуемой пробы (см. введение). Спектрографы средней дисперсии ИСП-22, ИСП-28, ИСП-30 охватывают широкий диапазон длин волн от 200 до 700 нм, где располагаются последние линии большинства химических элементов. Поэтому они применяются для анализа многих металлов, сплавов и образцов минерального происхождения, спектры которых не отличаются особой сложностью. Образцы, содержащие переходные элементы и обладающие многолинейчатыми спектрами, анализируются с помощью спектрографов высокой дисперсии ДФС-13, ДФС-8, СТЭ-1 и др. Так как отношение интенсивности линии к интенсивности сплошного фона согласно (1.16) и (1.17) растет с увеличением дисперсии, применение таких спектрографов приводит к повышению относительной чувствительности анализов.  [c.31]

Формулу (15) можно испольэова гь и для определения спектрального коэффициента излучения металлов, ojmaKo в этом случае показатель преломления является комплексной величиной  [c.44]

Обсуждается природа спин-орбитального взаимодействия и вычисляется значение обусловленного им расщеиления спектральных линий у щелочных металлов.  [c.202]

Сплавы платины с малым содержанием золота становятся термоэлектрически отрицательными по отношению к чистой платине. Все остальные металлы дают сплавы термоэлектрически положительные в паре с чистой платиной. Таким образом, в присутствии золота можно обнаружить присутствие примесей в платине, не определимых даже спектральным анализом. Примеси посторонних металлов к золоту и серебру образуют сплавы термоэлектрически отрицательные в паре с чистыми металлами.  [c.399]

В органических полупроводниках обнаруживаются внутренний и вентильный фотоэффекты. В контакте ароматического соединения и металла появляется фото-э. д. с., например, в системе литий — пернлен величина фото-э. д. с достигает 1 в. Фотопроводимость органических полупроводников вырастает с увеличением освегЦенности и температуры, а также обладает определенной спектральной характеристикой. Фотопроводимость может очень изменяться при введении кислорода в состав полупроводника.  [c.209]


Мощным источником ИК-излуче-ния в диапазоне длин волн 0,6—2,0 мкм являются глобары (стержни из окислов редкоземельных металлов). Галогенные лампы накаливания излучают в области 0,3—3,5 мкм, Индикатрисса излучения ТИ близка к сферической, их яркость составляет от 10 до 10 кд/м . Недостаток ТИ — инерционность, изменение спектра излучения при колебаниях напряжения питания, высокая температура нити накала, достоинство — широкий спектральный диапазон, который легко перестраивается, надежность, большая световая мощность (до 10в лм).  [c.100]

В спектрах щелочных металлов отдельные серии внешне походят на серию Бальмера (см например, рис. 3). Как видно из рис. 4. для тех же серий лития зависимости v от WSIv tf изображаются линиями, близкими к прямым, аналогично рис. 2 для бальмеровской серии водорода. Основываясь на этом, Ридберг попытался придать спектральным термам различных элементов вид, аналогичный тому, который они имеют для водорода, а именно он по-  [c.11]

Метод поглощения, как и испускания, позволяет определить произведение силы осциллятора (или вероятности перехода Л . ) на соответствующую концентрацию атомов N. Разница заключается в том, что в случае поглощения N представляет собой концентрацию атомов на нижнем уровне, соответствующем данной линии, в то время как в случае испускания N есть концентрация атомов на верхнем уровне. Следовательно, и при применении метода поглощения для определения абсолютных значений надо знать концентрации атомов Л/ . Если нижний уровень является нормальным, то значение = Nq находится непосредственно по температуре и упругости пара. Однако надо иметь в виду, что для большинства металлов упругость их паров известна недостаточно надежно, поэтому абсолютные значения вероятностей переходов определяются со значительно меньшей гочностью, чем из спектральных измерений произведений  [c.400]

На возможность расширения спектральных линий благодаря воздействию электрического поля соседних атомов и молекул впервые указал еще Штарк. При своих первых наблюдениях он заметил, что линии диффузной серии щелочных металлов 2p2D, легко расширяющиеся, обнаруживают и значительное расщепление во внешнем электрическом поле, в то время как линии резкой серии Ф расщепляются незначительно. Более высокие члены серий расширяются сильнее, что соответствует более широкому расщеплению во внешнем электрическом поле уровней с большими главными квантовыми числами. Так же можно установить связь между симметрией расши-рения линий и симметрией расщепления при эффекте Штарка. Например, водородные линии бальмеровской серии, обнаруживающие симметричный  [c.495]

Большинство твердых и жидких тел имеет сплошной (непрерывный) спектр излучения, т. е. излучают энергию всех длин волн от О до оо. К твердым телам, имеющим непрерывный спектр излучения, относятся непроводники и полупроводники электричества, металлы С окисленной шероховатой поверхностью. Металлы с полированной поверхностью, газы и пары характеризуются селективным (прерывистым) спектром излучения. Интенсивность излучения зависит от природы тела, его температуры, длины волны, состояния поверхности, а для газов — еще от толщины слоя и давления. Твердые и жидкие тела имеют значительные поглощательную и излучательную способности. Вследствие этсго в процессах лучистого теплообмена участвуют лишь тонкие поверхностные слои для непроводников тепла они составляют около 1 мм для проводников тепла — 1 мкм. Поэтому в этих случаях тепловое излучение приближенно мо) но рассматривать как поверхностное явление. Полупрозрачные тела (плавленый кварц, стекло, оптическая керамика и др., газы и пары) характеризуются объемным характером излучения, в котором участвуют все частицы объема вещества. Излучение всех тел зависит от температуры. С увеличением температуры тела его энергия излучения увеличивается, так как увеличивается внутренняя энергия тела. При этом изменяется не только абсолютная величина этой энергии, но и спектральный состав. При увеличении температуры повышается интенсивность коротковолнового излучения и уменьшается интенсивность длинноволнового излучения. В процессах излучения зависимость от температуры значительно большая, чем в процессах теплопроводности и конвекции. Вследствие этого при высоких температурах основным видом переноса может быть тепловое излучение.  [c.362]


Смотреть страницы где упоминается термин Спектральный металлов : [c.205]    [c.105]    [c.200]    [c.566]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.122 ]



ПОИСК



Борисов, М. Э. Брицке, Ю. С. Сукач. Автоматический спектрофотометр для спектрального анализа металлов по методу атомарной абсорбции в пламени

Высокочастотные безэлектродные спектральные лампы, с парами металлов

Рентгеновская, гамма-лучевая и спектральная дефектоскоКонтроль механических свойств металлов (испытание на твердость) (Ф. П. Волосевич)

Спектральный анализ металла

Спектральный анализ металла труб

Таблица П-2а. Спектральная (монохроматическая) степень черноты некоторых металлов (с неокисленной поверхностью) и материалов для X 0, лк

Чистота металлов, методы анализа эмиссионный спектральный



© 2025 Mash-xxl.info Реклама на сайте