Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усилия Матрицы

Примечание. Предельное зажимное усилие матриц равно предельному конечному усилию высадки.  [c.568]

ООО т. Допускаемое усилие по ползуну машины резко возрастает в направлении от середины к концу хода таким образом исчерпывающая характеристика горизонтально-ковочных машин в силовом отношении может быть дана лишь в виде графика допускаемых усилий по главному ползуну. Максимальное зажимающее усилие матриц обычно равно максимальному усилию по главному ползуну. Часть хода главного ползуна после закрытия матриц осаживающий ход с увеличением тоннажа машины увеличивается примерно от 50 до 360 мм, а число ходов в минуту падает от 90 до 25. Установленная мощность мотора в крупных моделях доходит до 150 №. Помимо конструктивных усовершенствований отдельных механизмов и всей горизонтально-ковочной машины в целом развитие последней идет также по пути к полной автоматизации ее работы, для чего в число узлов машины включается и увел автоматич. подачи.  [c.306]


Скорость деформирования должна приниматься в зависимости от наличия оборудования ка данном производстве. Изменяя какой-либо из параметров, таких как температура штамповки радиус вытяжного ребра матрицы е -ч радиус закругления пуансона зазор между пуансоном и матрицей 2 толщина материала 3 ввд смазки скорость штамповки усилие прижима качество обработанной поверхности вытяжного ребра свойства материала (пластические свойства и сопротивление деформированию)- определяют прежде всего его влияние, а также оптимальное значение построением кривых в зависимости от предельного коэффициента вытяжки.  [c.29]

Существует множество формул для определения усилий штамповки при вытяжке Р, которые найдены авторами для разных случаев вытяжки с учетом определенных условий процесса. Например, усилие горячей штамповки со смазкой и подогревом матрицы днищ, у которых i/ut я 1,3+1,6 составляет  [c.46]

Разработанный штамп состоит из пуансона 3 и матрицы 7, выполненной в виде протяжного кольца, помещенного в корпусе 8. На матрицу установлен прижим, имеющий верхнюю 14 и нижнюю 13 части, между которыми расположены пакеты тарельчатых пружин 6. На верхней части прижима фиксируются кулачки 5, профили которых описывают кривую оптимального усилия прижима фланцевой части заготовки в течение всего процесса вытяжки.  [c.56]

Для уменьшения удельных усилий выдавливания при проектировании штампуемой детали необходимо стремиться к такой ее конфигурации, при которой отсутствовали бы застойные зоны под торцом пуансона (см. рис. 3.36, в) или у рабочей поверхности матрицы (см. рис. 3.36, б).  [c.100]

Более качественную поверхность среза получают вырубкой со сжатием, когда заготовка со значительным усилием прижимается к торцу пуансона и рабочей плоскости матрицы. Увеличение сжимающих напряжений в зоне резания повышает пластичность и уменьшает возможность образования трещин, дающих шероховатую поверхность среза.  [c.105]

Углы пружинения уменьшаются при гибке с подчеканкой (когда полки заготовки с определенным усилием сжимаются между соответствующими плоскостями пуансона и матрицы), а также при приложении сжимающих или растягивающих сил, действующих вдоль оси заготовки. В последнем случае можно устранить зону растяжения или сжатия в очаге пластических деформаций. При разгрузке все слои заготовки будут или растягиваться, или сжиматься, что и уменьшит угловые деформации.  [c.106]

Смысл элементов матриц обычный, т. е. б,у—перемещение в основной системе по направлению -ой отброшенной связи от /-го усилия Xj= 1 А,-у,—перемещение в основной системе по направлению -ой отброшенной связи от внешней нагрузки и, наконец, Xj — истинное значение усилия в заданной системе в -ой связи.  [c.114]


Пластичная матрица. Если материал матрицы пластичен, а волокно хрупко, при достижении удлинения, соответствующего пределу прочности волокна, последнее рвется, тогда как матрица продолжает вытягиваться. В некоторых старых работах (Келли п др.) делается вывод о том, что при малой, концентрации хрупких волокон прочность композита может оказаться ниже прочности матрицы. Волокна разрываются при сравнительно низком среднем напряжении, а дальше вся нагрузка воспринимается матрицей, относительная площадь сечения которой у меньше, чем площадь сечения исходного материала, и = i — f/. Это уменьшение прочности происходит до тех пор, пока У/ меньше некоторого критического значения и р. При У/ > Уир большая часть нагрузки воспринимается прочными волокнами и прочность композита растет с увеличением Vf. Эта схема была бы верна, если бы разрушение всех волокон происходило в одном и том же сечении. В действительности при малых значениях Vf по мере удлинения матрицы происходит беспорядочное дробление. Распределение растягивающего усилия в каждом кусочке длины Z > 2Zo будет таким, как показано на рис. 20.6.1, а, при даль-  [c.700]

Как уже отмечалось в гл. П, пластическая деформация кристаллических тел может осуществляться не только скольжением, но и двойникованием. Двойникование для кристаллов с о. ц. к., г. ц. к. и г. п. у. решетками можно наблюдать при особых условиях деформирования. При этом металлографическими способами выявляются области, иначе травящиеся, чем окружающий матричный кристалл. Отличительными признаками этих областей являются прямолинейность и строгая кристаллографическая направленность двух параллельных границ. Дифракционными (рентгеновскими и др.) методами установлено, что эти области закономерно отличаются своей ориентировкой и расположением атомов относительно матрицы. Расположение атомов внутри этой области представляет собой зеркальное отражение расположения атомов в матричном кристалле (см. рис. 77,а). Плоскости зеркального отражения, пересечение которых с плоскостью шлифа имеют вид прямолинейных границ, являются плоскостями двойникования. Так, на рис. 77,а п б плоскостью двойникования является плоскость (112). Переориентированные области называют двойниками, а процесс их образования двойникованием. Двойники в кристаллах делятся на двойники роста (рост кристалла из расплава, в процессе рекристаллизации и отжига) и деформационные двойники. Двойникование при деформации — один из механизмов сдвиговой деформации. Для деформационного двойникования характерны высокие скорости и выделение энергии в форме звука с характерным потрескиванием в процессе деформации кристалла. Двойникование сопровождается скачкообразным изменением деформирующего усилия,  [c.131]

Необходимость пребывания изделия в матрице до температуры потери сверхпластичности. В противном случае, будучи нагретыми до состояния сверхпластичности, изделия по выходе из матрицы могут изменить свои размеры н форму при любом случайном и небольшом усилии.  [c.570]

При штамповке выдавливанием в разъемных матрицах последняя имеет одну или несколько плоскостей разъема, по которым ее части прилегают друг к другу (рис. 5.16). Общей особенностью штампуемых заготовок является то, что они состоят из двух частей центральной в виде сплошного или полого цилиндра, призмы и периферийной в виде фланцев, отростков, выступов, ребер и пр. К преимуществам штамповки в разъемных матрицах по сравнению с открытыми штампами относятся отсутствие заусенца возможность получения поковок без штамповочных уклонов ИЛИ С незначительными уклонами (до 1...3°) максимальное приближение формы поковки к форме готовой детали за счет формирования внутренних полостей возможность получения поковок с более высокой точностью размеров за счет постоянства усилия деформирования.  [c.110]

Однако штамповка в разъемных матрицах требует более сложных и дорогостоящих оборудования и технологической оснастки, нескольких штамповочных переходов с промежуточными нагревами в связи с более интенсивным охлаждением заготовки в штампе, повышенного усилия деформирования.  [c.110]

Гидровинтовые прессы изготовляют усилием 1...100 МН. Прессы снабжены нижним выталкивателем и приспособлены для штамповки в разъемной матрице. Они менее быстроходны, чем винтовые фрикционные прессы, компактны и более мощны (энергия удара в десятки раз больше энергии наиболее крупных винтовых фрикционных прессов). На гидровинтовых прессах получают поковки из алюминиевых сплавов с высокими ребрами толщиной до 0,5 мм при штамповочном уклоне 0,5° и радиусе закругления 0,3 мм.  [c.131]


Для повышения точности пористых порошковых заготовок применяют калибрование путем, обжатия их после спекания в калибровочных пресс-формах при припуске 0,5...1,0%. Усилие при калибровке составляет 10...25 % усилия холодного прессования. Упругое расширение после калибрования достигает 0,1 %. Отклонения диаметральных размеров калиброванных изделий от соответствующих размеров матрицы или стержня калибрующей пресс-формы не превышает 5...10 мкм.  [c.185]

Матрица [й ц] содержит компоненты усилий в i-м узле при единичных смещениях /-го узла при условии, что остальные узлы смеще-ПИЙ не имеют.  [c.558]

Основными параметрами прессового оборудования, от которых зависит качество прессованных при кристаллизации отливок, являются номинальное усилие, позволяющее создать необходимое давление прессования скорость холостого хода ползуна вниз, от которой в значительной мере зависит время выдержки расплава в матрице до приложения давления время прессования, максимальное значение которого предопределяет выбор конфигурации отливки и толщины ее стенок (диаметр слитка).  [c.71]

В связи с этим возникает необходимость определения критических усилий на границе покрытие—матрица и влияния на них технологии и условий борирования. С целью упрощения решения поставленной задачи мы исходили из предположения, что на поверхности металла формируется однофазный боридный слой. Практика борирования располагает различными вариантами однофазного борирования. Так как глубина боридного слоя значительно меньше размеров борируемых изделий, задачу о напряженном состоянии в покрытии можно рассматривать для упругого полупространства.  [c.29]

Кроме влияния на качлство днищ заниженный зазор снижает стойкость штампов, на матрице образуются глубокие надиры и при значительных усилиях вытяжки в результате больших распорных усилий матрица может разрушиться. Большему износу подвергается цилиндрическая часть пуансона.  [c.30]

Малая прочность при нагреве приводит к большим утонениям, достигаощим 25...30 %,и это необходимо учитывать при определении усилия прижима и эаэора между матрицей и пуансоном.  [c.12]

Чем болыде радиус закругления рабочей кромки матрицы, тем меньше усилие штамповки, вследствие чего снижаются меридианаль-ные напряжения растяжения в опасних зонах днища и, следовательно, уменьшается утонение.  [c.31]

Величина оптимального усилия прижима зависит от многих факторов отношения DА заготовки, радиуса закругления матрицы, зазора ме)1шу пуансоном и матрицей, вдца применяемой смазки, механических свойств штампуемого материала, конструкции штампа и др. Оцняко можно полагать, что во всех случаях оптимальное усилие  [c.48]

В условиях единичного производства может найти применение формообразование днищ энергией испаряющегося сжиженного газа (например, рлота) ло схеме "штамповка газовым пуансоном по жесткой матрице". При мгновенном превращении жку кого азота в газо-образнай в замкнутом объеме в нем можно развить давление до 800 Ша. Скорость нарастания давления при этом зависит от интенсивности его преобразования. Если распыленный жидкий азот впрыснуть в воду, то происходит мгновенное испарение азота, сопровождающееся появлением ударной волны. Работа с жвдким азотом абсолютно безопасна, а в экономическом отношении не энергоемка энергия при испарении 3 л сжиженного азота эквивалента энергии, затрачиваемой на одш ход пресса усилием 1000 кН при полной его нагрузке.  [c.66]

Для изготовления топливного сердечника и оболочки используется графитовый порошок, приготовленный из смеси природного графита, электрографита и связующих, объемные доли которых берутся одинаковыми. После изготовления шарового твэла ни материал оболочки, ни материал матрицы топливного сердечника не являются собственно графитом, а представляют собой углеродистый материал, который под воздействием нейтронного излучения и температуры может иметь существенные объемные изменения. В случае разнородного материала происходила бы неравномерная деформация оболочки и сердечника, что привело бы к разрушению твэла. Недостатком технологии изготовления прессованных твэлов является также большое усилие, имеющее место при прессовании твэла. Большое усилие может вызвать разрушение части микротвэлов в сердечнике.  [c.27]

Удельные усилия на контактных поверхностях при вытяжке с утонением стенки значительно больше, чем при вытнжке без утонения стенкн. Так как при вытяжке с утонением стенки заготовка скользит по матрице в направлении движения пуансона и по пуансону в обратном напрааленпи (от торца пуансона), то и силы трения на наружной и внутренней поверхностях заготовки направлены в противоположные стороны. Это обстоятельство увеличивает допустимую степень деформации (силы трения но матрице увеличивают растягивающие напрялчения в стенках протянутой части заготовки, а по пуансону — уменьшают).  [c.109]

Рассмотрим схему последовательных операций калибровки подшипников скольжения на автоматическом прессе (рио. 8.4). Спишальный захват устанавливает подшипнпк 3 над отверстием калибрующей матрицы 4 (положение /). Затем направляющая часть центрального стержня 2 входит во внутреннюю часть подшипника (положение II) и верхний пуансон 1 вдавливает подшипник в матрицу 4 (положение и/). После этого центральный стержень продвигается вниз и его калибрующая часть проходит через подшипник (положение IV). Этим осуществляется калибровка виутреш1его и наружного диаметров. Для обеспечения калибровки по высоте нижний 5 и верхний пуансоны продолжают движение навстречу друг другу до заданного предела (положение V ). Затем нижний пуансон отводится вниз, а центральный стержень вверх, и верхний пуансон / при дальнейшем своем ходе проталкивает под-шиппик из матрицы вниз (положение VI), после этого цикл повторяется. Такое последовательное расчленение деформаций на ряд операций позволяет снизить усилие калибровки в 2—3 раза, в сравнении с калибровкой, при которой деформация производится почти одновременно. Предварительная пропитка заготовок маслом значительно облегчает процесс.  [c.426]

Прямое (компрессионное) прессование — один из основных способов переработки реактопластов в детали. В полость матрицы пресс-формы 3 (рис. 8.6, а) загружают предварительно таблетизи-рованный или порошкообразный материал 2. При замыкании пресс-формы под действием усилия пресса пуансон 1 создает давление на  [c.429]


На рис. 1.10, в пористая матрица 1 также заполняет пространство между двумя оболочками, но продольные подводящие 2 и отводящие 3 каналы расположены равномерно по окружности и примыкают к стенкам. Поперечное течение теплоносителя I сквозь матрицу осуществляется в радиальном направлении, что позволяет снизить затраты мощности на его прокачку. Интересно отметить, что здесь проницаемый каркас может передавать значительные механические усилия от внутренней трубы к внешней. Если внутренняя стенка является оболочкой твэла, то это позволяет полностью разгрузить ее от давления газообразных продуктов деления и изготовить предельно тонкой. Конструкцию, представленную на рис. 1.10, в, можно использовать для охлаждения элементов, подверженных воздействию больишх механических нагрузок, например, подшипников.  [c.13]

Для формирования матрицы Якоби используем экономичную процедуру. Элементы R , и шз дадут вклады в элемент уц, равные соответственно l/ з и niilAt, где Д/ — шаг интегрирования. Элемент La даст вклад Д///-2 в элементы уц и (/22 со знаком + , в элементы уц и yzi —со знаком — н т. д. Элементы уц и (/,ц нулевые, так как нет связи между узлами I а 3. Элементы вектора невязок сформированы из усилий, приложенных к узлу. Надексом обозначены переменные, полученные на предыдущем  [c.134]

Формула (8.86) носит общий характер, хотя и получена на примере плоской задачи. Чтобы ею воспользоваться, необходимо построить только две матрицы, а именно матрицу закона Гука D, связывающую напряжения и деформации (или усилия и деформации), и матрицу В, которая позволяет перейти от перемещений к деформациям в элементе. Это иллюстируется далее на примере задачи изгиба пластины.  [c.266]

Основные соотношения МКЭ. Метод конечных элементов основан на предположении, что тело можно представить в виде набора элементов, соединенных друг с другом только в узлах. Связь узловых усилий с узловыми перемещениями задается с помощью матрицы жесткости элемента. Объединение матриц жесткости отдельных элементов в глобальную матрицу жесткости тела позволяет записать условия равновесия тела. При заданных действующих нагрузках или перемещениях и при известной глобальной матрице жесткостзг решение системы алгебраических уравнений равновесия позволяет найти все узловые усилия, а по ним — напряжения и перемещения в пределах каждого элемента. Тем самым напряженно-деформированное состояние тела становится определенным [59].  [c.83]

Как определяются узловые виутренние усилия Л,- через узловые перемещения д,- и коэффициенты матрицы жесткости /г  [c.229]

В. М. Пляцким [56] установлена оптимальная величина давления для медных сплавов, которая с увеличением диаметра слитка уменьшается по гиперболической зависимости при этом давление должно быть тем выше, чем ниже температура заливаемого расплава и больше время выдержки расплава в матрице до приложения давления, так как для запрессовки загустевшего металла в образующиеся усадочные поры необходимо приложить весьма высокие усилия. Повышенные давления требуются и для сплавов с широким интервалом кристаллизации, так как у них усадочная пористость распространена почти по всему объему, и задача состоит в общем уплотнении слитка.  [c.96]

Выбор любой приближенной модели для определения упругих свойств пространствен но-армврованного композиционного материала, исходя из свойств повторяющегося элемента (в идеальном случае — это решение краевой трехмерной задачи теории упругости на структурном уровне волокно—матрица), требует задания статико-кинематических соотношений, определяющих механизм передачи усилий между элементами среды. Для слоистой модели эти соотношения обусловливают равенство деформаций в плоскости слоев вдоль высоты слоистой структуры материала и равенство напряжений, действующих в поперечном к плоскости слоев направлении (см, (3.16) . Для других моделей, характеризующих пространственную структуру многонаправленного композиционного материала, статико-кинематические соотношения на поверхностях раздела разнородных элементов без решения  [c.82]

Рассматриваемые углерод-углерод-ные материалы при нагружении на растяжение в направлении армирования, так же- как и материалы с полимерной матрицей аналогичной структуры, имеют линейную зависимость о (в) до разрушения (рис. 6.12). Кривые деформирования зтих материалов при сжатии имеют отчетливо выраженный перелом, свидегельстБу-ющий о качественных изменениях в механизме передачи усилий. Напряжения,, при которых наблюдается перелом Б зависимости о (е), составляют 0,55—0,60 от предела прочности. Отличной но отношению к материалам с полимерной матрицей является зависимость прогиба от нагрузки при поперечном изгибе углерод-углеродных материалов (рис. 6.13). Кривые tFmax (i ) имеют несколько переломов, причем даже при малых отношениях l h образца характер этих кривых не изменяется.  [c.186]


Смотреть страницы где упоминается термин Усилия Матрицы : [c.121]    [c.232]    [c.198]    [c.19]    [c.58]    [c.69]    [c.77]    [c.77]    [c.696]    [c.698]    [c.559]    [c.83]    [c.223]    [c.225]    [c.355]   
Машиностроение Энциклопедический справочник Раздел 3 Том 6 (1948) -- [ c.403 ]



ПОИСК



Влияние зазора между пуансоном и матрицей на усилие вырубки н качество поверхности среза

Вычисление матрицы приведенных начальных усилий для многослойного стержня

Д- Чудаков, В. Д. Коробкин. Усилия волочения, редуцирования и выдавливания неупрочняющегося материала через коническую матрицу

Детали Проталкивание через матрицу — Усилия— Расчетные формулы

Изделия крепёжные — Высадка в разъёмной матрице определения усилий 505 — Применяемый металл 504 — Усилия Определение

Матрица Грина преобразования усилий

Матрица скручивающих усилий

Матрица усилий перерезывающих

Усилие проталкивания заготовки после окне матрицы

Усилие проталкивания заготовки после рабочую полость матрицы 393 — Схема



© 2025 Mash-xxl.info Реклама на сайте