Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температура абсолютная практическая

Выше отмечалось, что с ростом температуры абсолютные эффекты охлаждения возрастают, а температурная эффективность практически неизменна [40, 112, 116]. В последнее время вихревые трубы находят применение в авиационной и ракетной технике, в теплоэнергетической отрасли там, где температура газа на входе может существенно превыщать умеренные положитель-  [c.94]

Осуществив практически описанную модель абсолютно черного тела, можно исследовать излучение, выходящее из отверстия в полости. Направляя это излучение па чувствительный приемник (термопара, болометр и др.), можно измерить интегральное излучение г- Если предварительно разложить излучение с помощью подходящего спектрального прибора в спектр, то можно детально изучить спектральный состав теплового излучения и найти на опыте функцию е, т- Результаты таких измерений приведены на рис. 24.3. Разные кривые относятся к различным температурам абсолютно черного тела. Площадь, охватываемая кривой, дает испускательную способность абсолютно черного тела при соответствующей температуре.  [c.135]


Важным свойством термодинамической шкалы температур является наличие на ней предельно низкой температуры, называемой абсолютным нулем. Из равенства (1.2026) следует, что наименьшая температура отвечает случаю, когда = 0 эта температура и есть абсолютный нуль. Следовательно, абсолютный нуль температуры представляет собой наинизшую из всех возможных температур, при которой к. п. д. цикла Карно равен единице, что противоречит второму закону термодинамики. Поэтому температура абсолютного нуля практически недостижима.  [c.107]

Между абсолютной температурой и практической существует следующая зависимость  [c.9]

Вакуумная камера из нержавеющей стали была выкрашена внутри черной краской с излучательной способностью около единицы и охлаждалась до температуры жидкого азота. Теплоотдающая труба была выкрашена так же, так что эксперименты проводились в условиях, когда наружная стенка трубы излучала примерно как абсолютно черное тело в среду, температуру которой практически можно было считать равной нулю. В камере поддерживали вакуум порядка 10 —10 мм рт. ст., чтобы устранить влияние теплопроводности и конвекции между теплоотдающей трубой и средой.  [c.346]

Как уже было сказано в гл. 1, теплопередача через воздушную прослойку от одной поверхности к другой под действием разности температур происходит путем теплопроводности, конвекции и лучеиспускания. Доля каждой составляющей в общем количестве передаваемого тепла зависит от многих факторов, одним из которых является абсолютное значение температур на поверхностях. Известно, что при достаточно малой толщине воздушной прослойки конвективные токи не развиваются, так как градиенты температуры существуют практически только в слоях ламинарного движения жидкости у горячей и холодной стенок.  [c.19]

Газовое излучение характеризуется несколько более слабой зависимостью от температуры-, чем излучение серых твердых тел. Излучение паров углекислоты пропорционально абсолютной температуре в степени 3,5, а излучение водяного пара—кубу абсолютной температуры. В практических расчетах для упрощения методики условно принимают, что излучение газов, так же как излучение твердых тел, пропорционально четвертой степени их абсолютной температуры. При этом вводятся соответствующие температурные поправки в величины степени черноты этих газов.  [c.227]


Основной источник погрешности измерения действительной температуры тела пирометрами излучения — большая погрешность в оценке коэффициента излучения и его изменение в процессе измерения (данная погрешность классифицируется как методическая). Эта погрешность наибольшая у пирометров полного излучения и наименьшая у пирометров спектрального отношения. В [18] приведены формулы для оценки значений этих погрешностей. Поскольку оперативное измерение коэффициента излучения практически невозможно, часто при использовании пирометров искусственно создаются условия, приближающиеся к условиям измерения температуры абсолютно черного тела.  [c.340]

Практическая температура (абсолютная)  [c.48]

Система, построенная на трех основных единицах, могла бы, разумеется, быть применена для любых других, в частности тепловых и световых, измерений, для чего следовало связать определяющими соотношениями соответствующие величины. Например, не составило бы труда сделать температуру производной величиной, используя ее связи с другими физическими величинами, такими, как средняя кинетическая энергия поступательного движения молекул идеального газа, плотность теплового излучения абсолютно черного тела и т. п. Однако чрезвычайно широкое распространение, которое имеет в науке, технике и повседневной жизни температура, делает практически целесообразным выделение ее в число основных величин. В светотехнике существенными являются величины, характеризующие субъективное восприятие света (сила света, освещенность, яркость). Поэтому использование при определении этих величин только энергетических параметров лишит их важнейшего качества — характеристики воздействия на наше зрение.  [c.38]

Изменение свойств различных металлов при изменении температуры и напряженности магнитного поля. Распределение тока в материале токопроводов и нагреваемой детали, а также мощности существенно зависит от свойств материала — магнитной проницаемости и удельного электрического сопротивления. Магнитная проницаемость материала определяется температурой и напряженностью магнитного поля, а удельное электрическое сопротивление — температурой. Абсолютная магнитная проницаемость Лд многих материалов, таких, как медь и ее сплавы, алюминий и его сплавы, титан, стали аустенитного класса и др., близка к значению абсолютной магнитной проницаемости вакуума =4я-10" Г/м. Относительная магнитная проницаемость этих материалов [X = близка к единице (несколько больше единицы для парамагнитных и несколько меньше единицы для диамагнитных материалов) и практически не зависит от напряженности Магнитного поля.  [c.13]

Температура абсолютного нуля практически недостижима.  [c.9]

С повышением степени деформации до 30% эффект динамического деформационного старения практически не изменяется. При более высоких степенях деформации (осадкой), согласно данным работ [466, 507], происходит незначительное смещение горба в сторону более низких температур, абсолютная величина его уменьшается. Анализ изменения с температурой деформации разности между значениями оь, сгт, б, г] при степени деформации 28% и значениями этих величин при степени деформации 15%, характеризующей прирост упрочнения и убыль пластичности при последующем возрастании деформации еще на 13%, показывает, что с увеличением степени деформации в указанных пределах  [c.273]

Как показывает рис. 4-12, максимум кривой излучения вольфрама при 2000° К заметно сдвинут в сторону коротких длин волн по сравнению с максимумом кривой излучения абсолютно черного тела при той же температуре. Естественно ожидать, что повышение температуры абсолютно черного тела должно приблизить относительный состав его излучения к тому, который излучает вольфрам при 2000° К. Опыт показывает, что, действительно, относительные составы излучения всех металлов, пламен, углерода и некоторых других источников можно в такой степени воспроизвести с помощью абсолютно черного тела, что их цветности оказываются практически одинаковыми. Это обстоятельство и послужило основой для возникновения представления о цветовой температуре,  [c.150]


Сводка данных по теплопроводности изученных металлов приведена на рис. 4 на нем можно видеть, что только для молибдена и вольфрама имеет место хрестоматийная картина — монотонное убывание теплопроводности со стремлением к постоянному значению. Для остальных металлов наблюдается увеличение теплопроводности с температурой или практическое отсутствие температурного хода. Несмотря на отмеченное различие вся картина в целом носит более или менее явные следы единообразия. Убывание теплопроводности имеет место с большими абсолютными значениями теплопроводности, по мере уменьшения абсолютных значений происходит изменение знака температурного коэффициента, постепенное увеличение крутизны кривых.  [c.55]

Подавляющее большинство жидкостей при понижении температуры переходит в твердое состояние задолго до того, как начинают проявляться квантовые эффекты. Поэтому для большинства жидкостей вопрос о том, насколько важную роль играют фононные возбуждения, не имеет практического значения. Единственным исключением является жидкий гелий, который остается жидким вплоть до температуры абсолютного нуля. Следовательно, очень важно выяснить, можем ли мы при очень низких температурах описывать жидкий гелий как газ фононов и только таким образом. Эксперименты показывают, что это действительно так для жидкого Не , но не для жидкого НеЗ. С точки зрения теории ) причина лежит в том, что атомы Не подчиняются статистике Бозе.  [c.287]

При зеркальном отражении молекулы ведут себя подобно абсолютно упругим шарам. Энергия до и после соударения не изменяется. При диффузном отражении молекулы в результате соударения практически полностью абсорбируются стенкой, передавая ей свой импульс и энергию, а затем по истечении какого-либо малого промежутка времени отражаются от стенки с энергией, соответствующей температуре стенки. Практически большая часть молекул взаимодействует со стенкой по схеме диффузного отражения и лишь несколько процентов — по схеме зеркального.  [c.419]

Как известно, с ростом температуры количество растворенной влаги в керосине растет, но как видно из графика (линия 1) прирост абсолютной температуры остается практически постоянным. На наш  [c.74]

Однако для обычных систем, состоящих из большого числа частиц, наиболее вероятное направление процесса практически совпадает с абсолютно неизбежным. Поясним это на следующем примере. Пусть имеется равновесный газ. Выделим в нем определенный объем и посмотрим, возможно ли в этом объеме самопроизвольное увеличение давления. Из-за теплового движения чис ]о молекул в объеме непрерывно флуктуирует около среднего значения JV. Одновременно флуктуируют и температура, и давление, и внутренняя энергия, и т, д. Теория показывает, что относительная величина этих флуктуаций обратно пропорциональна корню квадратному из числа молекул в выделенном объеме, поэтому Др/р=1/ //У,  [c.28]

Рассмотрим систему тел, аналогичную изображенной на рис. 11.2. Установим между ними экран (рис. 11.4). Лучшую защиту второго тела от излучения первого обеспечит, естественно, абсолютно белый экран, полностью отражающий все падающие на него излучения. Реально можно сделать экран из полированных металлических пластин со степенью черноты еэ = 0,05-н0,15. В этом случае часть энергии, испускаемой первым телом, будет поглощаться экраном, а остальная — отражаться. В стационарном режиме вся поглощенная экраном энергия будет излучаться им на второе тело, в результате чего будет осуществляться передача теплоты излучением от первого тела через экран на второе. Оценим роль экрана, исключив из рассмотрения конвекцию и теплопроводность. Примем, что ei = = е2 = 8э = е и Т[>Т2- Термическое сопротивление теплопроводности тонкостенного экрана практически равно нулю, так что обе его поверхности имеют одинаковые температуры Т,.  [c.94]

Выше было показано, что вириальное уравнение состояния достаточно точно описывает свойства гелия в интересующих нас интервалах температуры и плотности. Рассмотрим теперь некоторые вопросы, связанные с практической газовой термометрией. В газовой термометрии наиболее широкое распространение получили два метода термометрия по абсолютным Р1 -изо-термам и несколько менее надежный метод газового термометра постоянного объема. В термометрии по абсолютным РК-изотер-мам в колбу известного объема V при постоянной, но неизвестной температуре Т добавляют определенное количество газа Л/Р и получают ряд значений давления Р. Затем можно построить график зависимости величины РК/Л/Р от Ы1У. Таким образом,  [c.86]

Это затруднение было преодолено в ревизии температурной шкалы 1968 г., когда единица температуры по практической и термодинамической шкалам была одинаково определена равной 1/273,16 части термодинамической температуры тройной точки воды. Единица получила название кельвин вместо градус Кельвина и обозначение К вместо °К. При таком определении единицы интервал температур между точкой плавления льда и точкой кипения воды может изменять свое значение по результатам более совершенных измерений термодинамической температуры точки кипения. В температурной шкале 1968 г. значение температуры кипения воды было принято точно 100 °С, поскольку не имелось никаких указаний на ошибочность этого значения. Однако новые измерения с газовым термометром и оптическим пирометром, выполненные после 1968 г., показали, что следует предпочесть значение 99,975 °С (см. гл. 3). Тот факт, что новые первичные измерения, опираюшиеся на значение температуры 273,16 К для тройной точки воды, дают значение 99,975 °С для точки кипения воды, означает, что ранние работы с газовым термометром, градуированным в интервале 0°С и 100°С между точкой плавления льда и точкой кипения воды, дали ошибочное значение —273,15 °С для абсолютного нуля температуры. Исправленное значение составляет —273,22 °С.  [c.50]


Принципиально влияние факторов температуры, давления и времени сводится к тем же следствиям относительно точности изготовления деталей, что и при прессовании и пресслитье, причем это влияние еще более усиливается благодаря весьма короткому циклу изготовления и полной его автоматизации. Кроме того, из-за высокой эластичности пластмасс, перерабатываемых в детали методом литья под давлением, приобретает значительно большее значение влияние давления —как его абсолютной величины, так и колебания величины давления. Специфические свойства литьевых пластмасс объясняют также повышенное влияние на точность колебания температуры литья (практически она равна температуре материального цилиндра).  [c.137]

Международная практическая температура (абсолютная) межд Международный практический градус Кельвина 1948 г. °К (межд. 1948) °К (Int. 1948) Гмежд = ( межд) 4 273,15) К (мсжд. 1948), где [ межд1—числовое значение температуры в Международных практических градусах Цельсия 1948 г. 0 "К (межд. 1948) соответствует —273,15 С (межд. 1948)  [c.73]

Смещения критическ 1х температур Ltd зависят от размеров поперечных сечений (толщи(1ы Я и ширины В) (рис. 48 и 49) [2J. Наибольшим ока.зы-вается увеличение вторых критических температур при статическом растяжении с варьированием толщины сечения образца. При этом интервал температур квазихрупких состояний сокращается. Ширина сечения оказывает меньшее влияние на увеличение критических температур, чем толщина сечения. Ударное инициирование трещин (по Робертсону) дает абсолютные значения вторых критических температур примерно на 60—70 С выше, чем при статическом инициировании. Для термически необработанных сварных соединений повышение первых критических температур происходит более интенсивно (в 1,4—1,5 раза), чем для основного металла. При увеличении предварительных пластических деформаций от О до 10 % за счет деформационного старения вторые критические температуры возрастают практически линейно для малоуглеродистых сталей это возрастание приблизительно равно 40 °С. Повышение температур старения при заданной предварительной деформации приводит к монотонному увели-ченшо вторых критических температур с максимумом при 250—300 С (если деформация равна 10 %, Д са i= 80 С), При циклических поврежден.иях, оцениваемых в относительных долговечно стях (отношение числа циклов предварительного нагружения к числу циклов до разрушения), увеличение Д/сд и для малоуглеродистых сталей (долговечность Ш ) происходит по линейной зависимости с коэффициентами пропорциональности соответственно 30— 35 и 40—80. Увеличение долговечности на порядок снижает указанные коэффициенты пропорциональности на 25— 30 %. Малоцикловые повреждения в области температур деформационногв старения (250—300 °С) повышают коэффициенты пропорциональности примерно в 2 раза.  [c.71]

Для теории термической обработки наиболее важны исследования мартенситных превращений в системах Ре—С (рис. 85) и Ре—N1 (см. ниже рис. 123). В обеих системах главные структурные ] зменения в твердом состоянии связаны с полиморфизмом базового компонента — железа (угцк- оцк.). Углерод растворяется в у- и а-модификациях железа по способу внедрения, а никель—по способу замещения. В системе Ре—С при комнатной температуре высокотемпературная модификация твердого раствора (аустенит) ни при каких концентрациях не стабильна, а в системе Ре—N1 при достаточно высокой концентрации никеля высокотемпературная модификация раствора при комнатной температуре абсолютно стабильна (см. аналогичные системы на рис. 68,а,б). Обе системы представляют исключительно большой практический интерес Ре— С как основа сталей, а Ре—N1 как основа сравнительно молодой группы высокопрочных мартенситно-стареющих сплавов (см. 47).  [c.209]

Таким образом, к. п. д. обратимого газового цикла Карно вполне определяется отношением крайних температур цикла и Т з, возрастая с увеличением высшей температуры Г, и с уменьшением низшей температуры Г,, а следовательно, и с увеличением разности этих температур, т. е. паденичтемпературы в цикле или температурного перепада. Температурный перепад в цикле является необходимым условием получения работы при Т = Т к. п. д. т) =0, т. е. работа отсутствует. Практически всегда 1, т. е. не вся теплота, по,пученная от источника, используется в цикле, превращаясь в работу лишь в абстрактном случае / =1, именно при Т — 0, т. е. если охладитель поддерживается при температуре абсолютного нуля  [c.99]

Давление за турбиной, равное давлению пара в конденсаторе, определяется температурой охлаждающей воды. 1 . сли среднегодовая температура охлаж,1,аю-щей воды на входе в конденсатор составляет приблизительно 10—15°С, то из конденсатора она выходит нагретой до 20—25 °С. Пар может конденсироваться только в том случае, если обеспечен отвод выделяющейся теплоты, а для этого нужно, чтобы температура lapa в конденсаторе была больше температуры охлаждающей воды хотя бы на 5— 10 °С. Поэтому температура насыщенного пара в конденсаторе составляет обычно 25—35 °С, а абсолютное давление этого пара рг соответственно 3—5 <Па. Повышение КПД цикла за счет дальнейшего снижения р2 практически невозможно из-за отсутствия естественные охладителей с более низкой температурой.  [c.65]

Из-за существенно более высокой энергонапряженности топлива и ограничения по температуре необходимый размер твэ-лов должен быть практически равным размеру микротвэлов, и,, таким образом, только они могут быть использованы в качестве тепловыделяющих элементов в реакторе БГР. Поскольку в реакторе БГР удельный расход охлаждающего гелия через поперечное сечение активной зоны на несколько порядков выше, чем в реакторе ВГР, а располагаемый перепад давления, приходящийся на активную зону, ограничен 2—3% абсолютного значения давления гелия в контуре, то задача выбора рациональной схемы охлаждения топлива становится одной из главных.  [c.37]

Ранее уже отмечали, что чем выше температура плавления металла, тем выше и температура его рекристаллизации. Поэтому для изготовления жаропрочных деталей применяют металлы с высокой температурой плавления. Так как даже кратковременная прочность быстро падает при приближении к температуре плавления, то практически максимальная абсолютная рабочая температура не может превосходить значений, равных 0,7—0,8 от абсолютной температуры плавления. В связи с этим жаропрочные алюминиевые сплавы предназначаются для рабочих температур не выше 250°С (для алюминия Т п — = 657°С), сплавы на основе железа — не выше 700°С (для железа 7 пл = 1530°С), а сплавы на основе молибдена (для молибдена 7 пл = 2бОО°С) —не выше 1200—1400°С.  [c.455]

В гл. 3 рассматривались измерения термодинамической температуры газовым термометром и другими первичными термометрами. Было показано, что в температурной области выше примерно 30 К практически все численные значения термодинамической температуры основаны на газовой термометрии. Однако усовершенствования в термометрии излучения, возможно, это изменят. Уже измерения температурных интервалов в области от 630 °С до точки золота показали, что МПТШ-68 вблизи 800 °С содержит погрешность около 0,4 °С [15, 75]. Фотоэлектрический пирометр сам по себе не является первичным термометром, так как им можно измерить не абсолютную спектральную яркость источника, а только отношение спектральных яркостей двух источников, и невозможно, чтобы один из них находился в тройной точке воды. Однако фотоэлектрическая пирометрия может дать очень точные значения- для разностей температур  [c.381]


Удельные теплоемкости абсолютно сухих тел незначительно отличаются друг от друга, и температура практически не влияет на величипр этих теплоемкостей.  [c.517]

В общем случае влияние температуры на характеристики процесса энергоразделиения в вихревых трубах, так же, как и давления, имеет достаточно сложный характер. В определенном диапазоне изменения температуры от —190 С до 700 °С [112, 116] по результатам проведенных опытов можно отметить повышение абсолютных э ектов охлаждения и подогрева Д . Однако значение температурной эффективности л, при этом практически неизменно. Прежде всего, это связано с тем, что с ростом  [c.55]

Если графики характеристик по абсолютным эффектам охлаждения при работе на влажном и сухом воздухе расположены практически эквидистантно с разностью примерно 12 К, то по эффектам подогрева 57]. с ростом заметно увеличивается, что вызвано существенным повышением в области больших средне-интефальной температуры подогретых масс газа, и, следовательно, возрастают тепловые потери вследствие неадиабатности и роста темпа испарения капельной влаги, попадающей в периферийные слои.  [c.65]

Когда кривая спектрал энергии тела, обладающей лучения, подобна кривой излучение первого назыв коэффициенты е(2, Т)=е = сопз1 играют роль масштабного множителя при сравнении серого излучения с излучением абсолютно черного тела при той же температуре (рис. 1-5). Значения Ямакс для черного и для серого тел равны. Введение понятия серое тело значительно расширяет возможности использования законов излучения, сформулированных для абсолютно черного тела, в практических расчетах, что доказывают, например, (1-19) —(1-21).  [c.19]

Значение AS процесса, как будет показано ниже, необходи- мо знать для расчета конкретных условий равновесия системы, поэтому практическая ценность третьего закона в области температур, далеких от абсолютного нуля, состоит а том, что с его помощью удается рассчитать химическое или фазовое равновесие, опираясь только на калориметрические данные. Особенно удобно применять метод абсолютных энтропий для расчетов равновесий с участием идеальных газов, поскольку для последних имеются формулы статистической термодинамики, позволяющие находить энтропии различных веществ по заданным термодинамическим параметрам и известным молекулярным постоянным частиц газа или пара (геометрия молекул, межатомные расстояния, частоты колебаний др.). Такие данные получают спектральными, электронографическими и другими нетермодинамическими методами.  [c.57]

Рассмотрим простой воздушный ожижитель Линде, описанный выше и схематически изображенный на фиг. 43. Цикл работы можно проследить по (Я — 15 )-диаграмме на фиг. 45. В этой диаграмме, как указывалось ранее (ср. фиг. 20 и 21), сплошные кривые изображают изобары iP2>P>Pi) тонкие пунктирные кривые — изотермы а жирная пунктирная—границу гетерогенной двухфазной области. Отметим, что внутри гетерогенной области изобары и изотермы прямолинейны и совпадают друг с другом, причем наклон их зависит от абсолютной температуры. Точка а представляет состояние газа при и р,, т. е. перед входом в компрессор. Процесс изотермического сжатия до и изображается линией аЬ. Практически = 293° К, а. ж приблизительно равны 1 и 200 атм соответственно. Линия Ьс изображает охлаждение сжатого газа в теплообменнике. Из точки с газ дросселируется от р и Тд до 7 j и 7 j, что показано горизонтальной прямой d (Я = onst). Положение точки d определяет относительное количество газа а, сжижаемое в процессе расширения. Жидкий воздух при р и Т- изображается точкой /, а воздух в состоянии насыщенного пара при тех же р и 7, — точкой е. Этот газообразный воздух через теплообменник возвращается, на вход компрессора, что показано на диаграмме линией еа.  [c.57]


Смотреть страницы где упоминается термин Температура абсолютная практическая : [c.49]    [c.64]    [c.58]    [c.74]    [c.456]    [c.528]    [c.249]    [c.98]    [c.307]    [c.97]    [c.100]    [c.8]    [c.530]    [c.64]   
Современная термодинамика (2002) -- [ c.183 ]



ПОИСК



Температура абсолютная

Шкала температур абсолютная термодинамическая (Кельвина) практическая

Шкала температур абсолютная термодинамическая (Кельвина) практическое осуществление



© 2025 Mash-xxl.info Реклама на сайте