Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Шкала термодинамическая

Термодинамическая температурная шкала Термодинамическая тем-пература (абсолютная) т градус Кельвина К К  [c.15]

Этот же ГОСТ предусматривает применение двух температурных шкал термодинамической температурной шкалы, основанной на втором законе термодинамики, и международной практической температурной шкалы, являющейся практическим осуществлением термодинамической температурной шкалы с помощью реперных (опорных) точек и интерполяционных уравнений.  [c.11]


Существуют две температурные шкалы термодинамическая температурная шкала и международная практическая температурная шкала 1948 г.  [c.12]

ТЕРМОДИНАМИЧЕСКАЯ ТЕМПЕРАТУРНАЯ ШКАЛА— см. в С1. Температурная шкала. ТЕРМОДИНАМИЧЕСКАЯ ТЕОРИЯ ВОЗМУЩЕНИЙ  [c.91]

Стандартом предусматривается применение двух температурных шкал термодинамической и международной практической, причем по каждой из этих шкал температура может выражаться как в градусах Кельвина (°К), так и в градусах Цельсия (°С).  [c.16]

В связи с этим возникла необходимость достижения международного соглашения о выборе международной практической температурной шкалы. Вкратце этот вопрос мы обсудим в разд. 11.8 и 11.9. Следует особо подчеркнуть, что истинная термодинамическая температура определяется выбором функции, т. е. равенством (11.2), но не выбором шкалы, хотя, к сожалению, во многих учебниках равенство (11.2) рассматривается как определение шкалы термодинамической температуры.  [c.151]

Примечание. Предусматривается применение двух температурных шкал термодинамической шкалы и Международной практической температурной шкалы температуры по каждой из этих шкал могут быть выражены двояким способом — в градуса Кельвина и градусах Цельсия.  [c.609]

При Я7 > 3 10 м К погрешность определения плотности излучения не превышает 1 %. Р это,м случае получаем значительно более простое выражение для построения шкалы термодинамических температур  [c.20]

Различают две температурных шкалы термодинамическую и международную, практическую. Обе шкалы можно градуировать в кельвинах (К) и в градусах Цельсия (°С). Соотношение между температурами по этим шкалам 7 =/+273,15, где Т — абсолютная температура,  [c.102]

Температура. Допускается применение двух температурных шкал термодинамической — в качестве основной шкалы и международной практической — для практических измерений.  [c.4]

Температуры ио обеим шкалам (термодинамической и международной практической) могут быть выражены в градусах Кельвина ("К) и в градусах Цельсия ( С) в зависимости от начала отсчета (табл. 17).  [c.99]

Следовательно, начало отсчета обеих шкал—термодинамической и газовой—при очень низком давлении соответствует одной и той же температуре.  [c.162]

Температура по обеим шкалам (термодинамической и международной практической) может быть выражена в градусах Кельвина (°К) и в градусах Цельсия (°С) в зависимости от начала отсчета (положения нуля) по шкале (см. главу 10). Символ обозначения абсолютной температуры Т, а стоградусной—г Г = + 273,15.  [c.27]


В молекулярной физике и термодинамике используются две основные температурные шкалы термодинамическая шкала температур (прежнее наименование единицы температуры по этой шкале — градус Кельвина — ""К, новое — кельвин — К) и международная практическая температурная шкала (единица температуры — градус Цельсия — "С).  [c.536]

Под температурой газа понимают меру средней кинетической энергии движения молекул газа. В СССР применяют две температурные шкалы термодинамическую и международную практическую. Температура по каждой из этих шкал может быть выражена двояким способом в градусах абсолютной шкалы (К) и в градусах Цельсия ( С) в зависимости от начала отсчета (положения нуля) по шкале. Термодинамическая температурная шкала, принятая X Генеральной конференцией по мерам и весам в 1954 г., имеет одну воспроизводимую опытным путем постоянную точку — тройную точку воды, которая имеет значение 273,16 К (точно), или 0,01 °С второй постоянной точ-  [c.7]

Градус Кельвина — единица измерения температуры по термодинамической температурной шкале, в которой для температуры тройной точки воды установлено значение 273,16 °К.  [c.10]

Основываясь на таком рассуждении, были введены элементарные понятия квантовой и статистической механики для интерпретации эмпирической стороны классической термодинамики. Квантовое представление об энергетических уровнях использовано для интерпретации внутренней энергии. Статистические теории приведены для того, чтобы показать, что термодинамические энергии и энтропия являются средними или статистическими свойствами системы в целом. Это позволяет понять основные положения второго закона, обоснование третьего закона и шкалу абсолютных энтропий. Также представлены методы вычисления теплоемкости и абсолютной энтропии идеальных газов. Численные значения абсолютной энтропии особенно важны для анализа систем с химическими реакциями. После рассмотрения этих основных положений технические применения даны в виде обычных термодинамических соотношений.  [c.27]

К настоящему времени наиболее значительным шагом в этом направлении явилось создание Предварительной температурной шкалы 1976 г. от 0,5 до 30 К (ПТШ-76), текст которой введен в приложения при подготовке русского текста книги (приложение VII). Исследования, выполненные в ряде термометрических лабораторий, в том числе в СССР, показали, что такой термодинамический интерполяционный прибор, как магнитный термометр, позволяет обеспечить сходимость результатов измерений лучшую, чем 1 мК. Позднее результаты работы Национальной физической лаборатории Англии (НФЛ) с газовым термометром позволили уточнить значения термодинамических температур. Кроме того, было показано, что интерполяция с газовым термометром от 4,2 до 13,8 К возможна с отклонениями менее 0,5 мК (по отечественным данным <0,4 мК).  [c.5]

Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]


ТЕРМОДИНАМИЧЕСКАЯ И ПРАКТИЧЕСКИЕ ТЕМПЕРАТУРНЫЕ ШКАЛЫ  [c.37]

Термодинамическая И Практические Температурные Шкалы  [c.39]

Термодинамическая и практические температурные шкалы  [c.41]

Неясно, почему БАРН не приняла предложения Каллендара, и прошло всего 10 лет до появления нового предложения о принятии международной шкалы. В 1911 г. Государственный физико-технический институт (ФТИ, Германия) официально обратился в МБМВ, Национальную физическую лабораторию (НФЛ) Англин и Бюро эталонов в Вашингтоне (с 1934 г. Национальное бюро эталонов, НБЭ) с предложением принять в качестве Международной практической шкалы термодинамическую шкалу температуры, а ее практическую реализацию осуществлять в соответствии с предложениями Каллендара 1899 г, НФЛ и Бюро эталонов согласились с этим предложе-  [c.41]

Обе шкалы — термодинамическая и МПТШ-68 могут градуироваться и в кельвинах, и в градусах Цельсия. Для. ШТТШ-68 температура тройной точки воды принята равной точно по определению 273,16 К или 0,01 °С температура таяния льда равна 273,15 К или о °С (реально воспроизводится с погрешностью примерно 10 К). Находит применение также выражение температуры в градусах Фаренгейта (°Р) и градусах Ренкина (°Р), которые равны (1°Р = = 1°Р). Соотношения между различными единицами измерения температуры даются формулами  [c.89]

Единица температуры — кальвин — единица термодинамической температуры — 1/273,16 часть термодинамической температуры тройной точки воды. В соответствии с рекомендацией Международной организации по стандартизации (150) при измерениях температуры допускается применение двух температурных шкал термодинамической шкалы и Международной практической температурной шкалы. Температуры по каждой из этих шкал могут быть выражены и в градусах Кельвина и в градусах Цельсия, в зависимости от начала отсчета (положения нуля) по шкале.  [c.288]

Утвержденная декретом Совнаркома мера температуры (t) есть деление стоградусной термодинамической шкалы термодинамическая шкала практически не отличается от шкалы Цельсия i). Градус этой шкалы обозначается знаком °. Температура, которая отсчитывается от исходной точки, лежаш,ей на 273° ниже нуля шкалы Цельсия, называется абсолютной температурой (Т), а ее нулевое деление — а б с о л ю т-нымнулем.  [c.538]

Система МКСГ является составной частью Международной системы единиц СИ. Гос5 дарственным стандартом допускается применение двух температурных шкал — термодинамической п международной нрактическ011 — для практических измерений (см. стр. 98).  [c.57]

При измерении теплофизических параметров одним из основных источников погрешности является погрешность измерения температуры. При оценке этой погрешности следует прежде всего учесть, что хотя положение о Международной системе единиц признает только одну температурную шкалу — термодинамическую температурную шкалу (ТТШ), на самом деле (из-за колоссальных технических трудностей) измерения производят, используя принципиально другую шкалу — Международную практическую температурную шкалу (МПТШ), которая является только некоторым приближением к термодинамической температурной шкале.  [c.12]

Данные табл. 4 показывают, что упругость диссоциации окислов для всех металлов возрастает с повышением температуры. Таким образом, термодинамическое сродство металла к кислороду падает. Например, серебро при 300° (абс. шкала) термодинамически должно окисляться, но уже при 400° (абс. шкала) и при всех более высоких температурах упругость диссоциации А 0 превышает парциальное давление кислорода в воздухе. Следовательно, при этих температурах серебро является вполне благородным по отношению к кислороду, неокисляемым металлом. При достаточно высоких температурах, например 2000° (абс. шкала), медь также делается неокисляемым металлом. Для остальных металлов (РЬ, 2п, N1, Ре) даже при этих температурах упругость диссоциации окислов остается еще достаточно низкой и, следовательно, протекание реакции окисления вероятно. Однако если парциальное давление кислорода резко снизить, наприхмер, переходя к бескислородным или восстановительным атмосферам, то и для этих металлов станет термодинамически вероятным не процесс окисления, а, наоборот, процесс ВОСС г а новления окисла. Подобное положение как раз и реализуется в большинстве металлургических процессов.  [c.39]

Новое определение термодинамической температурной шкалы нашло отражение в Положении о MПTLQ-48. Редакция 1960 г. , принятом одиннадцатой Генеральной конференцией по мерам и весам. Этой шкалой предусматривается применение двух температурных шкал термодинамической температурной шкалы и практической температурной шкалы. Температура по каждой из этих шкал может быть выражена двояким способом в градусах Кельвина (К) и в градусах Цельсия (°С) в зависимости от начала отсчета (положения нуля) по шкале.  [c.60]

Диаграммы Пурбе (диаграммы состояния системы металл—вода) могут быть использованы для установления границ термодинамической возможности протекания электрохимической коррозии металлов и решения некоторых других вопросов. Зти диаграммы представляют собой графики зависимости обратимых электродных потенциалов (в вольтах по водородной шкале) от pH раствора для соответствующих равновесий с участием электронов (горизонтальные линии) и электронов и ионов или 0Н (наклонные линии) на этих же диаграммах показаны (вертикальными линиями) равновесия с участием ионов или ОН , но без участия эл ктронов (значбния pH гидратообразования). На рис. 151 приведена диаграмма Пурбе для системы алюминий—вода, соответствующая уравнениям табл. 32.  [c.218]

В книге английского ученого Т. Куинна, заместителя директора Л еждународного бюро мер н весов, обобщены результаты развития термометрии за последние 25 лет в интервале температур от 0,5 до 3000 К и обсуждается ее современное состояние. Подробно рассмотрены принципы построения термодинамической и практических температурных шкал, возможности различных методов точного измерения термодинамической температуры, термометры сопротивления н термопары, реперные точки температурных шкал, перспективы совершенствования действующей сегодня МПТШ-б8, а также некоторые наиболее важные случаи измерения температуры в промышленных условиях.  [c.4]


По-видимому, именно это исключительное обилие материала и вытекающих отсюда трудностей его систематизации и критической оценки послужило причиной практически полного отсутствия крупных обзоров по термометрии, а тем более монографий. Этот серьезный пробел в значительной мере восполняет книга Т. Куинна. Главное внимание в ней уделено принципиальным вопросам температуре как параметру состояния системы, термодинамической и практическим температурным шкалам и связанной с ними технике измерения температуры различными методами на эталонном уровне точности. Подробный анализ эталонных методов термометрии, их возможностей, поправок, ограничений, источников погрешностей, способных оказать существенное влияние на результаты измерений в очень многих промышленных ситуациях, обладает большой общностью. Это делает книгу Т. Куинна весьма полезной для широкого круга инженеров и научных работников, имеющих дело с технической термометрией.  [c.5]

В книге обобщены опыт работы ведущих термометрических лабораторий на протяжении последних двух десятилетий, позволивший создать Международную практическую температурную шкалу 1968 г., являвшуюся в момент ее установления наилучшим приближением к термодинамической температурной шкале, а также результаты последних исследований, выявивших недостатки и неточности МПТШ-68 и подготовивших основы для ее замены в недалеком будущем.  [c.5]

Второй важнейший результат состоит в установлении Гильднером факта систематического отклонения термодинамической температурной шкалы от  [c.5]

План работы Консультативного комитета по термометрии (ККТ) предусматривает замену в 1987 г. МПТШ-68 новой шкалой, создаваемой на уровне современных экспериментальных возможностей с учетом новых данных о термодинамических температурах реперных точек и с устранением недостатков МПТШ-68. Часть этих недостатков, выявленных в течение прошедшего десятилетия, может быть устранена сравнительно легко.  [c.6]

Отмеченные выше результаты работ с магнитными термометрами и газовым термометром НФЛ позволили найти, а затем устранить термодинамическое несоответствие известных температурных шкал по давлению паров Не и Не с температурной шкалой, лежащей выше 13,81 К- Недавно в КОЛ разработаны новые таблицы зависимости давлений насыщенных паров гелия от температуры, соответствующие температурам по ПТШ-76. Представляется весьма вероятным, что новая МПТШ будет иметь своей основой для воспроизведения температур ниже 4,2 К температурную зав-исимость давления паров гелия вплоть до температур порядка 0,5 К. В качестве реперных температур для этого интервала возможно также применение переходов сверхпроводник-нормальный металл в чистых веществах. Однако исследования последних лет показали, что эти устройства требуют чрезвычайно осторожного обращения и приписанные температуры переходов могут оказаться сдвинутыми на величину, превышающую 1 мК- Кроме того, материалы из разных источников обнаруживают различающиеся величины Тс, что затрудняет применение этого способа в МПТШ.  [c.7]

Газовую термометрию Шаппюи можно считать истоком современной термометрии. Работа выполнялась в специально построенной лаборатории с превосходной термостабилизацией помещения, хотя в ней и отсутствовало многое из того, что сегодня считалось бы необходимым. Основная задача Шаппюи состояла в градуировке лучших ртутно-стеклянных термометров по абсолютной (т. е. термодинамической) температуре. Первая часть работы состояла в детальном изучении газового термометра постоянного объема, заполнявшегося водородом, азотом и углекислым газом в качестве рабочего тела. Результатом были отсчеты показаний набора ртутно-стеклянных термометров Тоннело, четыре из которых были типа а и четыре усовершенствованного типа б со шкалой, расширенной до —39 °С. На рис. 2.1 представлены результаты Шаппюи для трех газов, полученные в период 1885—1887 гг. [15]. Сочетание превосходной воспроизводимости термометров Тоннело и чрезвычайной тщательности работы с газовым термометром позволило получить погрешность менее одной сотой градуса почти во всем интервале — действительно выдающееся достижение.  [c.39]

В 1889 г. 1-я ГКМВ утвердила принятую МКМВ в 1887 г. шкалу водородного газового термометра постоянного объема, основанную на реперных точках плавления льда (О °С) и кипения воды (100 °С) и получившую название нормальной водородной шкалы в качестве международной практической шкалы. В описании шкалы указывалось начальное давление заполнения (1 м рт. ст. при о °С) и никаких поправок на отклонение свойств водорода от идеального газа не вводилось. По этой. причине шкала была названа практической . Она, очевидно, и не была термодинамической, поскольку наблюдалась зависимость результатов измерений от свойств рабочего газа. В гл. 3 будет подробно рассмотрено, каким образом отклонения от свойств идеального газа учитываются в газовой термометрии. Здесь же следует подчеркнуть, что для газового термометра постоянного объема, калиброванного в двух точках и примененного для интерполяции между ними, как это сделал Шаппюи, погрешности, вызванные неидеальностью газа, скажутся лишь в меру изменения самой неидеальности между реперными точками. Для водорода эти изменения от О до 100 °С неве-  [c.39]

За исключением области самых низких температур (скажем, ниже 1 К), первичные термометры остаются гораздо более трудоемкими при использовании и менее воспроизводимыми, чем лучшие вторичные термометры. Для большинства целей удобство и воспроизводимость показаний термометра важнее, чем точность по термодинамической шкале. Кроме того, существует очень много физических величин, для измерения которых требуется находить разности температур. К их числу относятся теплоемкость, теплопроводность и другие теплофизические величины. Если отклонения применяемой практической шкалы от термодинамической описываются медленно меняющейся плавной функцией температуры, то серьезных проблем не возникает. Если же, напротив, практическая шкала содержит небольшие, но заметные скачки отклонений от.термодинамической шкалы, то и измерения соответствующих физических величин в зависимости от температуры дадут неожиданные ложные скачки, которые отражают только несовершенство термометрии. Для исключения подобных затруднений необходимо, чтобы практическая шкала была гладкой функцией от термодинамической температуры. Это эквивалентно требованию непрерывности первой и второй производных температурной зависимости разности практической и термодинамической температурных шкал. Если для конк >етного вторичного термометра (такого, например, как платиновый термометр сопротивления) нетрудно рассчитать гладкую практическую шкалу, то получить гладкое соединение шкал для двух разных вторичных термометров гораздо сложнее. Основной источник трудностей заключается в том, что два различных участка шкалы часто основаны на разных физических закономерностях, отклонения которых от термодинамической шкалы не совпадают. Соединение шкалы по платиновому термометру сопротивления и по платинородие-вой термопаре в МТШ-27, так же как и в МПТШ-48 и МПТШ-68, служит хорошим примером типичных трудностей. В МПТШ-68 в этой точке имеется скачок первой производной от разности / — 68, достигающий 0,2%. Такие разрывы можно  [c.44]

Это затруднение было преодолено в ревизии температурной шкалы 1968 г., когда единица температуры по практической и термодинамической шкалам была одинаково определена равной 1/273,16 части термодинамической температуры тройной точки воды. Единица получила название кельвин вместо градус Кельвина и обозначение К вместо °К. При таком определении единицы интервал температур между точкой плавления льда и точкой кипения воды может изменять свое значение по результатам более совершенных измерений термодинамической температуры точки кипения. В температурной шкале 1968 г. значение температуры кипения воды было принято точно 100 °С, поскольку не имелось никаких указаний на ошибочность этого значения. Однако новые измерения с газовым термометром и оптическим пирометром, выполненные после 1968 г., показали, что следует предпочесть значение 99,975 °С (см. гл. 3). Тот факт, что новые первичные измерения, опираюшиеся на значение температуры 273,16 К для тройной точки воды, дают значение 99,975 °С для точки кипения воды, означает, что ранние работы с газовым термометром, градуированным в интервале 0°С и 100°С между точкой плавления льда и точкой кипения воды, дали ошибочное значение —273,15 °С для абсолютного нуля температуры. Исправленное значение составляет —273,22 °С.  [c.50]



Смотреть страницы где упоминается термин Шкала термодинамическая : [c.10]    [c.670]    [c.43]    [c.49]   
Единицы физических величин и их размерности Изд.3 (1988) -- [ c.181 ]

Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.84 , c.85 ]



ПОИСК



Абсолютная термодинамическая температура шкала температур

Абсолютная термодинамическая шкала и термодинамическая шкала Цельсия

Г-лава двадцать первая. Термодинамическая температура и международv ная шкала температуры

Градус абсолютной термодинамической шкал

Единица термодинамической температуры — кельвин. Температурные шкалы

Отклонения МПТШ-68 от термодинамической шкалы

Положение точек кипения серы и ртути на термодинамической шкале температур (перевод Беликовой Т. П. и Боровика-Романова

Приведение газовой температурной шкалы к термодинамической при помощи данных для эффекта Джоуля—Томсона (перевод Беликовой Т. П. и Боровика-Романова

Реализация термодинамической температурной шкалы

Современное определение абсолютной термодинамической температурной шкалы и соотношение этой шкалы с Международной практической температурной шкалой

Стоградусная шкала термодинамическая

Таблица 9. Единицы термодинамической и Международной практической температурных шкал

Температура абсолютная по термодинамической шкале

Температурная шкала международная термодинамическая

Температурная шкала термодинамическая

Термический КГЩ цикла Карно. Понятие о термодинамической температурной шкале

Термодинамическая и практические температурные шкалы

Термодинамическая логарифмическая шкала температур

Термодинамическая стоградусная шкала температур

Термодинамическая температурная абсолютная шкала

Термодинамическая шкала Кельвина

Термодинамическая шкала температу

Термодинамическая шкала теплот

Термодинамическая шкала—см. Шкала температур

Термодинамические свойства Не Фомичев, Пе Б. Кантор, В. В. Кандыба Новые исследования температуры плавления корунда как вторичной реперной точки шкалы температур

Термодинамический к. п. д. цикла Карно. Понятие об абсолютной термодинамической шкале температур

Тождество шкалы идеального газа и газа, подчиняющегося уравнению Ван-дер-Ваальса, с термодинамической шкалой

Цикл Карно и термодинамическая температура (НО). Шкала Кельвина

Цикл Карно с произвольным рабочим теТемпературная шкала идеального газа как термодинамическая шкала температур

Шкала Ренкина термодинамическая

Шкала температур абсолютная термодинамическая (Кельвина)

Шкала температур абсолютная термодинамическая (Кельвина) воспроизводимость

Шкала температур абсолютная термодинамическая (Кельвина) границы

Шкала температур абсолютная термодинамическая (Кельвина) исторический обзор

Шкала температур абсолютная термодинамическая (Кельвина) международная

Шкала температур абсолютная термодинамическая (Кельвина) нижний предел

Шкала температур абсолютная термодинамическая (Кельвина) области

Шкала температур абсолютная термодинамическая (Кельвина) платинового термометра сопротивления

Шкала температур абсолютная термодинамическая (Кельвина) положение

Шкала температур абсолютная термодинамическая (Кельвина) практическая

Шкала температур абсолютная термодинамическая (Кельвина) практическое осуществление

Шкала температур абсолютная термодинамическая (Кельвина) стандартная термометрическая

Шкала температур абсолютная термодинамическая (Кельвина) экстраполяция

Шкала температур абсолютная термодинамическая поддержание

Шкала температур абсолютная термодинамическая сравнение с другими шкалами

Шкала температур абсолютная термодинамическая усовершенствование

Шкала температур термодинамическая

Шкалы

Шкалы лабораторных термометров температурные термодинамические



© 2025 Mash-xxl.info Реклама на сайте