Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Схема работы компрессоров

Схема работы компрессора изображена на рис. 50 (на вкладке). В правом ЦНД при движении поршня вниз вследствие разрежения пластины всасывающего клапана отжимаются от седла и происходит процесс всасывания (желтый цвет) через фильтр 17 и всасывающие клапаны 16 (нагнетательный клапан 15 закрыт), а в левом ЦНД — первая ступень сжатия (зеленый цвет) и нагнетание через клапан 2 по трубе 5 в холодильник 4 (всасывающие клапаны 1 закрыты).  [c.60]

На рис. 56 изображена схема работы компрессора. Шестерня 2, сидящая на валу двигателя 1, через блок шестерен 7 и < , вращающихся на эксцентриковой оси 9, приводит в движение шестерню 3, сидящую на коленчатом валу 6.  [c.64]


Рис. 56. Схема работы компрессоров ЭК-7Б и ЭК-7В Рис. 56. Схема работы компрессоров ЭК-7Б и ЭК-7В
Схема работы компрессоров простого действия дана на фиг. 159, двойного действия—на фиг. 160 и двухступенчатого—на фиг. 161. Двухступенчатые компрес-  [c.107]

Схема работы компрессора (рис. 51 йа вкладке). В правом ЦНД при движении поршня  [c.67]

На рис. 57 изображена схема работы компрессора. Шестерня 2, сидящая на валу двигателя /, через блок шестерен 7 и 8, вращающихся на эксцентриковой оси 9, приводит в движение шестерню 3, сидящую на коленчатом валу 6. При движении поршня 4 от крышки 5 происходит всасывание, а в другом цилиндре поршень движется к крышке 5 и происходит нагнетание (движение воздуха на рис. 57 показано стрелками). При обратном движении поршня 4 всасывающие клапаны закрываются, а через нагнетательные клапаны сжатый воздух поступает в нагнетательную полость крышки 5 и далее — в главный резервуар. Таким образом, за один оборот коленчатого вала 6 в каждом цилиндре попеременно совершаются процессы всасывания и нагнетания.  [c.72]

Рис. 92. Схема работы компрессора типа К2-Лок-1 Рис. 92. Схема работы компрессора типа К2-Лок-1
Большое значение для экономичности газотурбинной установки имеет повышение эффективного к. п. д. компрессора, входящего в схему установки. Дело в том, что примерно 75% мощности газовой турбины расходуется на привод компрессора, и поэтому общий эффективный к. п. д. ГТУ главным образом определяется совершенством работы компрессора. Вообще же газовая турбина являет-  [c.278]

На рис. 9-1 изображена принципиальная схема работы газотурбинной установки, состоящей из объединенных общим валом газовой турбины 1, нагнетателя (компрессора) 2, электрического генератора <3 и пуско-  [c.92]


Из данной схемы работы ГТУ следует, что в замкнутом цикле непрерывно циркулирует одно и то же количество рабочего газа. Давление циркулирующего газа перед компрессором может быть различным. Применение более высокого начального давления н более низкой температуры рабочего газа перед компрессором обеспечивает высокое давление рабочего газа за компрессором при оптимальном значении степени повышения давления. При этих условиях в ГТУ замкнутого цикла по сравнению с открытым циклом при той же мощности установки значительно уменьшаются размеры компрессора, турбины и теплообменных аппаратов. Кроме того, большое преимущество закрытой схемы ГТУ — возможность применения твердого топлива. Однако в описанной схеме имеется громоздкий, сложный и дорогой нагреватель (воздушный котел), поэтому в новых конструкциях стремятся или полностью его устранить, или, по крайней мере, сократить, сохранив при этом преимущества, присущие замкнутому циклу.  [c.213]

На фиг. 37 в системе Тs-координат представлен цикл с адиабатическим сжатием и адиабатическим расширением и схема газотурбинной установки, работающей по это- J му циклу. Схема работы газотурбинной установки следующая воздух поступает в компрессор 1 с температурой Т- и с давлением р , которое отличается от давления окружающей среды Рд на величину сопротивлений на входе, т. е. в приемной камере и фильтре. Затем воздух сжимается в компрессоре с адиабатическим к. п. д. до давления р2 и температуры Т . При давлении pj меньшем, чем рз, происходит подвод топлива к камере сгорания 2. Коэффициент избытка воздуха а соответствует температуре продуктов сгора-  [c.103]

В ПГТУ с закрытой схемой могут быть применены наиболее часто используемые в атомных газотурбинных установках газовые теплоносители — гелий и углекислота. Для гелия из-за малого атомного веса удельный весовой расход воды в процессе сжатия получается в несколько раз больше, а для углекислоты, наоборот, меньше, чем для азота (воздуха) или окиси углерода. Поэтому для повышения эффективности работы компрессора с впрыском воды в качестве рабочего газа в ПГТУ целесообразнее всего применять углекислый газ. Но сравнительно малая разность энтальпий смеси углекислого газа с водяным паром, получаемая в турбине, обусловливает увеличение удельного весового расхода (на 1 кВт-ч) смеси. Размеры компрессора и турбины в этом случае будут больше, чем для смеси азота или окиси углерода с водяным паром.  [c.13]

Рис. 5.17. К объяснению явления помпажа а — взаимное положение линий границы помпажа компрессора и рабочих режимов двигателя б — запас устойчивой работы компрессора в — рассогласование работы крайних ступеней осевого компрессора на нерасчетных ре кимах г — схема обтекания лопаток первой, средней и последней ступеней компрессора на пониженном числе оборотов Рис. 5.17. К объяснению явления помпажа а — взаимное положение линий границы <a href="/info/111273">помпажа компрессора</a> и рабочих режимов двигателя б — <a href="/info/6921">запас устойчивой</a> <a href="/info/30688">работы компрессора</a> в — рассогласование работы крайних <a href="/info/111307">ступеней осевого компрессора</a> на нерасчетных ре кимах г — схема обтекания лопаток первой, средней и последней <a href="/info/111305">ступеней компрессора</a> на пониженном числе оборотов
На рис. 5.7 представлена схема двухкаскадного компрессора. Он состоит из компрессора низкого давления (КНД) и компрессора высокого давления (КВД). Каждый из компрессоров приводится во вращение от своей турбины. Однако их совместная работа обусловлена равенством расходов воздуха и зависимостью условий работы КВД от параметров потока за КНД. В свою очередь, режим работы КНД в значительной мере определяется режимом работы КВД.  [c.96]

Применительно к рассматриваемой схеме двигателя. уравнения режимов совместной работы компрессора и турбины включают уравнения расхода воздуха (газа) через первый и второй контуры двигателя, а также уравнение баланса работ (мощностей) турбокомпрессора двигателя.  [c.80]


При определении характеристик компрессора на стенде можно получить почти все возможные режимы работы компрессора. При работе компрессора в системе ГТД той или иной схемы реализуется лишь часть этих возможных режимов, занимающая некоторую область, в поле характеристики компрессора — область рабочих режимов. Значения Як и Gs.np, соответствующие какому-либо конкретному рабочему режиму, изображаются а характеристике компрессора рабочей точкой. Важное значение в теории ГТД имеют точки, соответствующие установившимся режимам работы двигателя, т. е. постоянным во времени значениям частоты вращения, подачи  [c.152]

Двухвальные двигатели (например, двигатель Тайн со взлетной мощностью 4050 кВт), у которых турбина высокого давления вращает компрессор высокого давления, а турбина низкого давления вращает компрессор низкого давления и через редуктор воздушный винт, позволяют достаточно просто и экономично обеспечить диапазон устойчивых режимов работы компрессора вследствие отсутствия неэкономичной системы перепуска воздуха. Кроме того, такая схема двигателя облегчает запуск ТВД, требует меньшей мощности пускового устройства, так как необходимо раскручивать только турбокомпрессор высокого давления, и улучшает его приемистость. Недостатком двухвальных ТВД является большая конструктивная сложность двигателя и его системы автоматики по сравнению с одновальными ТВД.  [c.25]

Расчет принципиальной тепловой схемы ГТУ производят, последовательно рассчитывая показатели работы компрессора и газовой турбины. Для определения энергетических показателей одноступенчатой простой ГТУ (см. рис. 20.1) с достаточной точностью мож-гю использовать следующие зависимости  [c.297]

Рис.223. Схема работы компрессорной установки с винтовым компрессором Рис.223. Схема работы <a href="/info/119712">компрессорной установки</a> с винтовым компрессором
Для получения высоких давлений (порядка 100 ат и выше) применяют многоступенчатое сжатие (до пяти и выше ступеней). Устройство таких компрессоров и принцип их работы подобны разобранным для двухступенчатого. На рис. 74 приведена схема трехступенчатого компрессора с двумя промежуточными холодильниками, а на рис. 75 — диаграмма его рабочего процесса в координатах р — у и Т — 5.  [c.129]

При рассмотрении схемы работы воздушно-реактивного двигателя было сказано, что сжатие воздуха по адиабате 1—2 (рис. 105) происходит как в диффузоре, так и в компрессоре. Однако можно представить себе следующий предельный случай все сжатие от давления до р происходит только в диффузоре. Компрессор, а с ним и турбина отсутствуют. В этом случае мы получаем так называемый прямоточный  [c.160]

При рассмотрении схемы работы воздушно-реактивного двигателя было предположено, что сжатие воздуха по адиабате 1—2 (фиг. 119) происходит как в диффузоре, так и в компрессоре. Однако  [c.201]

Рис. 52. Схема работы компрессоров КТб, КТ7, КТбЭл Рис. 52. Схема работы компрессоров КТб, КТ7, КТбЭл
Теплообменные аппараты (нагреватели и охладител1 ) применяются для поддержания нормальной температуры рабочей жидкости. Устанавливаются они, как правило, в гидробаках. Иногда в баке устанавливаются сразу оба аппарата. Так например, в схеме маслоснабжения турбокомпрессора имеется электрический нагреватель, который включается в зимнее время только перед пуском компрессора. При нормальной работе компрессора включается водяной охладитель [10].  [c.204]

Цикл воздушной холодильной установки. Впервые промышленное получение холода было осуществлено с помощью воздушной компрессорной холодильной установки. На рис. 1.77, а изображена принципиальная схема воздушной компрессорной холодильной установки, а на рис. 1.77, б, в изображен ее цикл в координатах p,vnT, s. Рассмотрим принцип работы установки. Воздух из холодильника / охлаждаемого помещения 5 засасывается в цилиндр компрессора 2 (процесс а-1 на рис. 1.77, б), где он подвергается сжатию (процесс 1-2). При сжатии температура воздуха возрастает от до Тг (процесс 7-2 на рис. 1.77, в). Сжатый воздух выталкивается из цилиндра компрессора (процесс 2-Ь) в тепло-приемник 3, где он изобарно охлаждается от температуры Тг до Тз (процесс 2-3), отдавая теплоту охлаждающей воде qi = ,i Т — Тз). Охлажденный воздух при давлении рз поступает в цилиндр расширительной машины 4 (процесс Ь-3). Здесь происходит его адиабатное расширение от Pi до р4 = Pi с отдачей работы компрессору. При адиабатном расширении воздуха температура его понижается до 203...213 К. Охлажденный воздух из цилиндра расширительной машины выталкивается в холодильник I (процесс 4-а), где он изобарно нагревается (процесс 4-1), отнимая от среды охлаждаемого помещения количество теплоты Я1 — Срт2(Т — Ti)- На рис. 1.77, б пл. al2ba изображает работу компрессора /к, пл. — работу расширительной машины /,, а пл. 12341, равная разности этих площадей, — работу, затрачиваемую в установке, т. е. работу цикла / = /к — 1р. Следовательно, в результате работы установки осуществляется обратный цикл 12341 и поэтому, с другой сто-  [c.151]


Рассмотрим схему работы идеальной ГТУ (рис. 87). Газотурбинная установка состоит из газовой турбины 1, воздушного компрессора 2, пускового устройства 3, тоПливоподаюш,его устройства 4, камеры сгорания 5, сопла 6, выхлопного патрубка 7  [c.206]

Рассмотрены открытая (с камерой сгорания химического топлива) и закрытая (с высокотемпературным ядерным реактором) тепловые схемы ПГТУ. Описаны особенности условий работы, конструкции и эксплуатации ПГТУ. Приведены результаты экспериментального исследования эффективности работы компрессора с впрыском воды. Работа содерншт термодинамический и технико-экономический анализ тепловых и атомных электростанций с ПГТУ. Рассмотрены транспортные ПГТУ (для авиации, речного и морского флота, магистральных неф-те- и газопроводов), энерготехнологические ПГТУ с высокотемпературным ядерным реактором (для энергетики, металлургии, химии, нефтехимии, угольной и других отраслей промышленности).  [c.2]

Поскольку ПГТУ с открытой и закрытой тепловыми схемами работают по одному и тому же циклу, то при одинаковых показателях адиабатного расширения и сжатия и одинаковых теплофизических свойствах рабочих тел — парогазовых смесей — возможна унификация почти всэго основного оборудования турбин, компрессоров, холодильников-конденсаторов, электрических генераторов и т. д., за исключением горячего источника энергии (камзры сгорания в открытой схеме и ядерного реактора в закрытой).  [c.12]

Р и с. 33. Схема экспериментальной установки для исследования работы компрессора с вспрыском воды и без него  [c.57]

Таким образом, применение многовальной схемы двигателя улучшает условия работы отдельных (особенно крайних) ступеней компрессора и турбины на нерасчетных режимах их работы, а также может существенно расширить диапазон устойчивых режимов работы компрессора (без применения перепуска воздуха и поворота лопаток направляющих аппаратов).  [c.211]

Протекание дроссельных, высотных и скоростных характеристик ДТРД, выбор программ регулирования для их осуществления в большой степени определяется особенностями совместной работы компрессора и турбины, особенностями газодинамической схемы двигателя, зависит от свойств и реальных характеристик компрессоров первого и второго контуров.  [c.79]

В промышленных компрессорных установках наибольшее распространение получили пластршчатые роторные компрессоры. Конструктивная схема такого компрессора представлена на рис. 22.3. Внешний двигатель вращает ротор 1, ось которого смещена относительно оси полости статора (корпуса 2). Рабочие камеры компрессора образуются поверхностью ротора, стенками корпуса и пластинами 3, которые свободно перемещаются в пазах ротора и центробежной силой прижимаются к корпусу компрессора. За счет эксцентриситета при вращении ротора происходит изменение объема рабочих камер, и за один оборот ротора прослеживаются три процесса работы компрессора, отмеченные на схеме. Между стенками корпуса 2 циркулирует охлаждающая жидкость, обеспечивающая отвод тепла, выделяющегося при работе компрессора.  [c.305]

Из теории лопаточных машин известно, что при работе компрессора, особенно с высокой степенью повышения давления, в процессе запуска и вывода его на основные эксплуатационные режимы, а также при больших приведенных частотах враш,ения может возникать газодинамическая неустойчивость, поэтому в двигателях с высокими значениями п компрессор необходимо регулировать. Из применяемых на практике трех способов регулирования компрессоров (перепуск воздуха из промежуточных ступеней, поворот лопаток направляюш,их аппаратов и использование двух- или трел. .аскадных компрессоров) способ разделения компрессора на отдельные каскады со своими турбинами, имею-ш,ими различную частоту враш,ения, в наибольшей мере определяет конструктивную схему двигателя, число его опор и валов. Следует также отметить, что применение двух- или трехкаскадных компрессоров благоприятно сказывается и на приводяш,их их турбинах, так как позволяет оптимизировать газодинамические параметры турбин и уменьшить число их ступеней.  [c.33]

Вместе с тем, чтобы еще больше ограничить число запусков в единицу времени часто используют устройство для предотвращения высокой частоты циклов пуск-останов , в качестве которого применяют реле времени или часовой механизм. Эти механизмы предназначены для установления минимальной паузы между двумя последующими запусками, чтобы ограничить число циклов пуск-останов для работающих компрессоров (главным образом со встроенными электромоторами). После остановки компрессора, оборудованного таким устройством, его включение невозможно до тех пор, пока не пройдет определенный промежуток времени (например, 6 минут, если мы хотим, чтобы в час было не более 10 запусков), достаточный для охлаждения встроенного мотора. На рис. 30.7 показано применение такого устройства, в качестве которого используется реле времени, в схеме управления работой компрессора, останавливаемого с выполнением одномоментного вакуумирования.  [c.171]

Конструктивная схема осевого компрессора ГТУ представлена на рис. 2.2. В ней можно выделить основные элементы, которые обеспечивают работу компрессора (см. также рис. 1.2, а, е). Воздух через комплексное воздухоочистительное и шумоподавляющее устройство (КВОУ) забирается из атмосферы и поступает во входной патрубок I (сечение НК—НК) и кольцевой конфузор 2, а покидает компрессор через спрямляющий аппарат 3, диффузор 7 и выходной патрубок б (сечение КК—КК). Основное назначение этих неподвижных элементов — подвести воздух к рабочим ступеням компрессора, а затем отвести его, обеспечив минимальные потери, равномерное поле скоростей и давлений воздуха. В современных осевых компрессорах путь воздуха весьма сложен. После конфузора установлен входной направляющий аппарат (ВНА) 5, закручивающий воздух в сторону вращения ротора, и используемый для изменения расхода воздуха и воздействия на режим работы всей ГТУ. Далее расположены рабочие ступени компрессора I, II,..., z, каждая из которых состоит из рабочего лопаточного аппарата — рабочего колеса (РК) и следующего за ним неподвижного направляющего аппарата (НА). В некоторых конструкциях осевых компрессоров первые ступени име-  [c.39]

Расчет тепловой схемы начинают с определения параметров рабочего тела в осевом компрессоре, используя в качестве исходных данных координаты точки нерасчетного режима на рис. 6.1 (например, точку 3). Уточняют рабочую изодрому компрессора, степень повыщения давления воздуха, изоэн-тропный КПД компрессора, а также ряд характеристик работы компрессора давление воздуха на входе в компрессор, МПа,  [c.192]

Авторы [48] реализовали 80-кратное сжатие импульсов второй гармоники YAG Nd + лазера с активной синхронизацией мод. Импульсы второй гармоники имели начальную длительность 33 пс, пиковую мощность 240 Вт и частоту повторения 100 МГц. Параметры входного излучения и сохраняющего поляризацию световода (длина 105 м, диаметр сердцевины 3,8 мкм) были согласованы так, чтобы реализовать оптимальный режим компрессии. Применялась двухпроходная схема решеточного компрессора, позволившая избежать дифракционного смещения лучей и получить на выходе импульсы с длительностью 410 фс и пиковой мощностью 1,2 кВт. В последующей работе  [c.260]


Перед выездом из депо локомотивной бригадой выполняются следующие работы. Из главных и вспомогательных резервуаров, маслоотделителей, холодильников и масленок насоса удаляют воду. Проверяют уровень масла в картерах компрессоров и масленках паро-воздушных насосов, исправность манометров и даты их проверки. Наружным осмотром проверяют работу компрессоров и паро-воздушных насосов, а также пределы давлений в главных резервуарах, которые поддерживаются регуляторами давлений, и правильность положения ручек всех кранов тормозной системы. Включают автотормоз на соответствующий режим, производят зарядку тормозной сети локомотива или моторвагонного поезда до установленного давления, проверяют действие кранов машиниста на чувствительность к торможению при ступени торможения снижением давления в уравнительном резервуаре на 0,5—0,6 а вспомогательный тормоз на величину предельного давления в тормозных цилиндрах при полном торможении. Проверяют величину утечки воздуха из уравнительного резервуара и тормозной сети, действие автоматического и электропневматического тормозов при ступени и полном служебном торможении, состояние рычажной передачи и ее предохранительных устройств действие схемы электрического торможения, если предусмотрено его применение в пути следования.  [c.14]

Тема 2. Центробежные компрессоры . Принцип работы и схема центробежного компрессора. Изменение давления, температуры и скорости воздуха при его движении по компрессору. Изображение процесса сжатия воздуха в рУ и Т5 диаграммах. Потери в компрессоре. Аддиабатический и эффективный к.п.д. компрессора. Типы колес. Вход в колесо. Треугольники скоростей на входе. Движение воздуха по колесу. Условия устойчивого движения воздуха в колесе /критерий Стечкина/. Треугольник скоростей на выходе из колеса. Теорема Эйлера о моменте количества движения, коэффициент уменьшения передаваемой энергии /формула Казанджана/, трение боковых поверхностей диска о воздух.  [c.174]

Рассмотрим принципиальную схему действия автокомпрессора АПКС-6 с приводом от двигателя базового автомобиля (рис. 172). На раме 13 базового автомобиля установлен компрессор 4, воздухосборник 1 и холодильник 2. Холодильник обдувается потоком воздуха, подаваемого вентилятором 3, установленным на валу компрессора. Привод компрессора осуществляется от двигателя автомобиля посредством промежуточных карданных валов 10 и 12 через коробку отбора мощности И. Вал компрессора приводится от карданных валов через редуктор 7 и эластичную муфту 5. Компрессор включают с помощью рычага 9 из кабины машиниста (водителя). Для контроля за работой компрессора предусмотрен щит 6 с приборами. Компрессор и механизмы станции закрыты капотом 8 с открывающимися боковыми щитами. На раме автомобиля установлен ящик для хранения инструмента, приспособлений и комплект раздаточных шлангов.  [c.256]

В соответствии со схемой воздух через заборник воздуха 3 поступает в компрессор /СУП, приводимый в действие трехфазным электродвигателем М. Сжатый в компрессоре воздух через влагоотделительный фильтр ФВ нагнетается в воздухосборники ВС1, ВС2. Последние снабжены контрольными манометром МН и вентилем ВН для ручного сброса воздуха в атмосферу. Между компрессором и влагоотделительным фильтром установлен обратный клапан КО, препятствующий перетечке воздуха из воздухосборников в компрессор в случаях, когда последний не работает. Если давление в воздухосборниках превышает допустимое, установленный между компрессором и обратным клапаном предохранительный клапан КП автоматически сбрасывает избыточный воздух в атмосферу, поддерживая давление в воздухосборниках на заданном уровне. Из воздухосборников воздух через регулятор давления РД и четырехлинейный двухпозиционный распределитель Р поступает в пневматический цилиндр Ц. Регулятор давления управляет работой компрессора. При падении давления воздуха в воздухосборниках ниже необходимого для работы исполнительного механизма (цилиндра) регулятор давления включает электродвигатель компрессора для подачи воздуха в воздухосборники.  [c.273]


Смотреть страницы где упоминается термин Схема работы компрессоров : [c.79]    [c.117]    [c.135]    [c.650]    [c.118]    [c.40]    [c.40]    [c.326]   
Тормозное оборудование железнодорожного подвижного состава (1989) -- [ c.6 , c.7 ]



ПОИСК



12, 13 — Схема работы

Компрессорий

Компрессоры

Компрессоры схемы

Работа компрессора

Схема и принцип работы ступени осевого компрессора

Схема и принцип работы центробежного компрессора Основные параметры ступени

Схемы и особенности работы центробежной и диагональной ступеней компрессора



© 2025 Mash-xxl.info Реклама на сайте