Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Компрессоры схемы

Жатки—Вязальные аппараты 12 — 108 -— Характеристика 12 —109 — Механизмы игл и компрессоров — Схемы 12—109  [c.75]

В реальных машинах компрессор засасывает не влажный, а сухой насыщенный или слегка перегретый пар, что уменьшает теплообмен между рабочим телом и стенками компрессора. Схема машины показана на фиг. 77, цикл —  [c.164]

Фиг. 93. Схема размеров к расчету компрессора (схема проточной части компрессора). Фиг. 93. <a href="/info/256023">Схема размеров</a> к <a href="/info/397200">расчету компрессора</a> (схема <a href="/info/65115">проточной части</a> компрессора).

Аккумуляторная батарея имеет постоянный подзаряд от цепей освещения вагона и мотора-компрессора. Схема управления дана на фиг. 42.  [c.422]

Рассмотрим в качестве примера работу трехступенчатого поршневого компрессора, схема которого приведена на рис. 9.3, а рабочий процесс в pv- и Гх-координатах (для идеального компрессора) — на рис. 9.4.  [c.127]

Рис. 24. Кинематический анализ кривошипно-ползунного механизма компрессора а) схема, б) план положения, в) план скоростей, г) план ускорений. Рис. 24. <a href="/info/158908">Кинематический анализ</a> <a href="/info/1926">кривошипно-ползунного механизма</a> компрессора а) схема, б) <a href="/info/1958">план положения</a>, в) <a href="/info/219">план скоростей</a>, г) план ускорений.
Рис. 92. К примеру 2. а) схема двухступенчатого компрессора, б) индикаторная диаграмма компрессора. Рис. 92. К примеру 2. а) <a href="/info/401111">схема двухступенчатого</a> компрессора, б) <a href="/info/760">индикаторная диаграмма</a> компрессора.
На рис. 1 изображена наглядная схема образования сборочной единицы кривошипно-шатунной группы компрессора. Для ее сборки помимо отдельных деталей (поз. 2—5) подается заранее собранная сборочная един ща (поз. /), представляющая шатун (поз. 6) с запрессованными с даух сторон втулками (поз. 7, 8). Собранная сборочная единица кривошипно-шатунной группы подается далее на сборку всего изделия. На схеме указаны названия и условные позиции составных частей сборочной единицы.  [c.6]

Принципиальная схема газотурбинной установки (ГТУ) представлена на рис. 6.4. Воздушный компрессор К сжимает атмосферный воздух, повышая его давление от pi до р2 и непрерывно подает его в камеру сгорания КС. Туда же специальным нагнетателем Н непрерывно подается необходимое количество жидкого или газообразного топлива. Образующиеся в камере продукты сгорания выходят из нее с температурой 7з и практически с тем же давлением (если не учитывать сопротивления), что и на выходе из компрессора (рз = р2). Следовательно, горение топлива (т. е. подвод теплоты) происходит при постоянном давлении.  [c.59]


В различных технологических схемах возможны другие варианты парогазовых установок, позволяющих использовать теплоту, выделяющуюся в технологическом процессе для получения механической энергии, чаще всего потребляемой в этих же схемах, на привод компрессоров, насосов и т. д.  [c.68]

Специфическую группу энергетических ГТУ составляют установки, работающие в технологических схемах химических. нефтеперерабатывающих, металлургических и других комбинатов (энерготехнологические). Они работают в базовом режиме нагрузки и предназначены чаще всего для привода компрессора, обеспечивающего технологический процесс сжатым воздухом или газом за счет энергии расщирения газов, образующихся в результате самого технологического процесса.  [c.176]

Сравнение схем абсорбционной и компрессионной (см. рис. 23.10 и 23.8) холодильных установок показывает, что роль компрессора в абсорбционной установке выполняют кипятильник и абсорбер. Процесс поглощения в абсорбере соответствует всасыванию паров холодильного агента в компрессор, а выпаривание в кипятильнике — процессу сжатия и выталкивания агента из компрессора.  [c.201]

На рис. 23.12 приведена схема теплового насоса для отопления здания. Элементы схемы компрессор К, конденсатор КД, регулирующий вентиль РВ и испаритель И составляют обычную компрессионную холодильную установку. Испарение холодильного агента в испарителе происходит за счет теплоты, получаемой от холодной воды, и энергии, подводимой к компрессору.  [c.202]

Продукты сгорания нз камеры с псевдоожиженным слоем подвергаются очистке при 800 °С и направляются в газовую турбину, которая приводит в действие компрессор и электрогенератор. Выхлопные газы газовой турбины охлаждаются в котле-утилизаторе с использованием тепла для хозяйственных нужд. Паровая турбина получает пар из поверхностей нагрева, расположенных в псевдоожиженном слое. По другой схеме (рис. 1,8, б) продукты сгорания из камеры с псевдоожиженным слоем направляются в дополнительный теплообменник и только после него при температуре 430 °С подвергаются  [c.18]

Ркс. 1.10. Принципиальная тепловая схема ПГУ-1100 с ВПГ-2650 с сжиганием твердого топлива в псевдоожиженном слое /—сушилка i —циклоны 3—высоконапорный парогенератор с псевдоожиженным слоем 4—циркуляционный насос 5—паровая турбина мощностью 800 МВт 5—конденсатор 7—конденсаторный насос 8—подогреватель низкого давления 9—питательный насос 10—деаэратор И— экономайзер 12—газовая турбина 13—компрессор 14—паровая турбина с противодавлением для привода дожимающего компрессора 15—дожимающий компрессор  [c.22]

В конструкцию ГТ-125-950-ПГ необходимо внести изменения, учитывающие условия ее работы в схеме ПГУ повысить расход газа через газовую турбину по сравнению с серийной (за счет увеличения расхода топлива на ПГУ по сравнению с ГТУ) и установить два боковых радиальных патрубка в турбокомпрессорном блоке для вывода воздуха после компрессора и ввода продуктов сгорания из ВПГ в газовую турбину.  [c.23]

Кроме того, имеются возможности оптимизации предлагаемой схемы ПГУ, в частности отказ от применения дожимающего компрессора, что позволит повысить к.п.д. установки (нетто) до —40%. Сравнительные характеристики ПГУ и ПСУ приведены в табл. 1.1.  [c.26]

Рис. 1.12. Схема ПГУ с предварительной газификацией твердого топлива в псевдоожиженном слое дробленый доломит 2 — дробленый уголь 3—угольный шлюз 4—доломитовый шлюз 5— осушитель угля 6—рециркуляция газа 7—рециркуляционный компрессор й—подача угля- в газогенератор 9—подача доломита 10-реактор с псевдоожиженным слоем 11—использованный доломит 12—топка газификатора 13—переработанный крупнодисперсный уголь 14 — мелкодисперсный уголь 15 — воздух 16—пар 17 — зола 18 — система возврата частиц 19 — систему удаления твердых частиц 20 — газовая турбина 21 — котел-утилизатор 22 — паровая турбина 23 — электрогенератор 24 — уходящие газы Рис. 1.12. Схема ПГУ с предварительной газификацией <a href="/info/881">твердого топлива</a> в <a href="/info/5512">псевдоожиженном слое</a> дробленый доломит 2 — дробленый уголь 3—угольный шлюз 4—доломитовый шлюз 5— осушитель угля 6—<a href="/info/73993">рециркуляция газа</a> 7—рециркуляционный компрессор й—подача угля- в газогенератор 9—подача доломита 10-реактор с <a href="/info/5512">псевдоожиженным слоем</a> 11—использованный доломит 12—топка газификатора 13—переработанный крупнодисперсный уголь 14 — мелкодисперсный уголь 15 — воздух 16—пар 17 — зола 18 — система возврата частиц 19 — систему удаления <a href="/info/184030">твердых частиц</a> 20 — <a href="/info/884">газовая турбина</a> 21 — <a href="/info/30635">котел-утилизатор</a> 22 — <a href="/info/885">паровая турбина</a> 23 — электрогенератор 24 — уходящие газы

От компрессора Рис. 3.16. Схема экспериментальной установки  [c.104]

Большое значение для экономичности газотурбинной установки имеет повышение эффективного к. п. д. компрессора, входящего в схему установки. Дело в том, что примерно 75% мощности газовой турбины расходуется на привод компрессора, и поэтому общий эффективный к. п. д. ГТУ главным образом определяется совершенством работы компрессора. Вообще же газовая турбина являет-  [c.278]

На рис. 21-2 изображена схема воздушной холодильной установки, где в качестве рабочего тела применяют воздух, являющийся наиболее удобным, безвредным и доступным рабочим телом. Воздушная холодильная установка работает следующим образом. Воздух, охлаждающий помещение /, сжимается в компрессоре 2, в результате чего температура его увеличивается. Сжатый воздух при постоянном давлении нагнетается в теплообменник 5, в котором охлаждается водой до температуры окружающей среды. После этого сжатый воздух поступает в расширительный цилиндр, или детандер, 4, где расширяется до начального давления. При расширении температура воздуха падает до — 60° или — 70° С, и холодный воз-  [c.330]

На рис. 21-11 показана простейшая схема установки высокого давления с однократным дросселированием для сжижения воздуха по методу Линде. В компрессоре 1 воздух сжимается адиабатно  [c.338]

Схема теплового насоса содержит компрессор I, своим выхо-  [c.393]

Цикл газотурбинной установки с подводом теплоты при постоянном объеме представлен на рис. 40, а схема установки дана на рис. 41. В компрессоре К происходит адиабатное сжатие воздуха (линия 1—2, рис. 40). Сжатый воздух поступает в камеру сгорания КС, куда одновременно топливным насосом ТН подается жидкое топливо. Сгорание происходит при постоянном объеме (при закрытых клапанах). Воспламенение горючей смеси обычно производится от электрической свечи ЭС. Продукты сгорания проходят через выпускной клапан камеры, посту-  [c.131]

В зависимости оттого, какой пар всасывается компрессором (сухой или влажный), процесс в холодильных машинах называют сухим или влажным. При сухом процессе в испарителе получается сухой насыщенный пар. Чтобы обеспечить поступление в компрессор сухого пара, холодильную установку снабжают отделителем жидкости, или сепаратором, через который жидкость возвращается в испаритель. Схема такой установки дана на рис. 112.  [c.266]

При достаточно длинной трубе (газохода), соединяющей камеру сгорания с сопловым аппаратом, в массе газа можно осуществить автоколебательный процесс. Использование этого процесса для периодического заполнения объема воздуха и для сжатия топливновоздушной смеси позволяет отказаться от компрессора. Схема подобного пульсирующего двигателя, который использовался на немецких самолетах-снарядах V-1, изображена на рис. 6.16, в. Воздух поступает в камеру сгорания при атмосферном давлении через автоматически действующие пластинчатые клапаны, которые открываются при возникновении разрежения в камере. Истечение газов продолжается в силу инерщ[и их массы в длинной трубе 6 и после достижения в камере атмосферного давления, что и создает разрежение. В газах, выходящих из трубы, под действием атмосферного давления возникает волна повышенного давления, которая перемещается в сторону камеры сгорания и сжимает свежий заряд. Частота процесса сгорания соответствует частоте колебания газа в трубе. Подобный двигатель может использоваться в качестве генератора газа для турбины для уменьшения длины двигателя трубу навивают вокруг него.  [c.209]

Так, весьма удачным оказалось применение ГТУ в доменном процессе. В этом случае топливом служит доменный газ (практически это окись углерода), а мош,ность установки затрачивается на приведение в движение воздушного компрессора, подаюш,его сжатый воздух в домну. Отходяш,ие из турбины газы используются для подогрева воздуха, подаваемого в домну. Для того, чтобы доменный газ ввести в камеру сгорания, в ГТУ устанавливается дополнительный газовый компрессор. Схема установки Невского машиностроительного завода имени В. И. Ленина, работаюш,ей на доменном газе, приводится на рис. 10.  [c.146]

Винтовой компрессор. Схема этого компрессора — компрессора Лис-хольма — дана на рис. II.8. Роторы 5 и 5 выполнены с винтовыми зубьями  [c.149]

Различные принципы сжатия тела в компрессорах и конструктивные отличия к-омпреос-оров не изменяют характера процеосов, протекающих в -них. Поскольку как в первой, так и во второй группах компрессоров (кроме инжекционных) термодинамические процессы одинаковы, рассмотрим действие наиболее простого одноступенчатого поршневого одноцилиндрового воздушного компрессора, схема и диаграмма которого представлены на фиг. 8. 37.  [c.198]

При наддуве воздух (или топливовоздушную смесь в двигателях с внешним смесеобразованием) вводят в цплиндр после предварительного сжатия его в компрессоре. Схема газотурбинного наддува показана на рис. 27. Отработавшие газы при открытии выпускного клапана подводятся к газовой турбине, приводяш,ей в действие компрессор. При работе двигателя с наддувом, когда давление выше, чем р,. (рис. 27, б), перекрытие кланапов используют для продувки цилиндра воздухом, что улучшает его очистку от остаточных газов, а та) же снижает тепловую напряженность поверхностей, образующих камеру сгоранпя (днище иоршня, стенки цилиндра, головки клапанов и головка блока цилиндров).  [c.69]

Ш01П1Я его темп-ры 1Юсредстпом адиабатич. сжатия в компрессоре. Схема действия механич. выпарки с центробежным ь-ом-  [c.339]


Рис. 93. Расчет маховика для двухступенчатого компрессора по Виттенбауэру о) схема механизма-и повернутые планы скоростей б) индикаторная диаграмма в) графики приведенных моментов сил сопротивления и движущих сил г) график приведенного момента инерции от масс ведомых звеньев механизма d) график изменения кинетической энергии е) диаграмма Виггенбауэра ж) лучи О—/ и О—И, проведенные под наибольшим и наименьшим углами. Рис. 93. <a href="/info/74876">Расчет маховика</a> для <a href="/info/217950">двухступенчатого компрессора</a> по Виттенбауэру о) <a href="/info/292178">схема механизма</a>-и повернутые <a href="/info/219">планы скоростей</a> б) <a href="/info/760">индикаторная диаграмма</a> в) графики <a href="/info/420678">приведенных моментов</a> сил сопротивления и движущих сил г) график <a href="/info/420678">приведенного момента</a> инерции от масс <a href="/info/23">ведомых звеньев механизма</a> d) график изменения <a href="/info/6470">кинетической энергии</a> е) диаграмма Виггенбауэра ж) лучи О—/ и О—И, проведенные под наибольшим и наименьшим углами.
Строим схемы механизма компрессора, соответствующие восьми положе- 1иям зв на АВ (рис. 93, а) в масштабе (i = 0,0025 м/мм,  [c.167]

Рис. 1.5. Схема установки гидроформинга с псевдоожиженным слоем катализатора /—реактор 2—регенератор 3—воздушный компрессор 4— каталнзаторопровод 5—трубчатая печь Рис. 1.5. Схема установки гидроформинга с <a href="/info/5512">псевдоожиженным слоем</a> катализатора /—реактор 2—регенератор 3—<a href="/info/106887">воздушный компрессор</a> 4— каталнзаторопровод 5—трубчатая печь
В простом открытом газотурбинном цикле камера сгорания с псевдоожиженным слоем под давлением работает как контактный воздухоподогреватель. Часть воздуха после компрессора поступает для сжигания топлива, а остальная часть подмешивается к продуктам сгорания с целью поддержания определенной температуры стенок камеры и температуры горячего газа, подаваемого в газовую турбину. Возможны н другие конструктивные и схемные решения. На рис. 1.6 показана схема ГТУ, оснащенной топочным устройством с псевдоожиженным слоем под давлением. Особенностью данной схемы является подача 1/3 воздуха после компрессора для псевдоожижения слоя, в то время как остальные 2/3 поступают в змеевики, погруженные в слой. Благодаря этому значительно уменьшается количество газов, которые необходи. МО очищать от твердых частиц. Кроме того, такое решение позволяет использовать обычную газовую турбину с  [c.16]

Рис. 1.8. Схемы включения котлоагрегатов с псевдоожиженным слоем под давлением в ПГУ 1—камера сгорания с псевдоожиженным слоем 2—паровая турбина 3—газоониститель 4—газовая турбина 5—компрессор 6—котел-утмлизатор Рис. 1.8. <a href="/info/440147">Схемы включения</a> котлоагрегатов с <a href="/info/5512">псевдоожиженным слоем</a> под давлением в ПГУ 1—<a href="/info/30631">камера сгорания</a> с <a href="/info/5512">псевдоожиженным слоем</a> 2—<a href="/info/885">паровая турбина</a> 3—газоониститель 4—<a href="/info/884">газовая турбина</a> 5—компрессор 6—котел-утмлизатор
Замкнутый процесс обладает рядом достоинств. В нем можно использовать дешевые твердые топлива и применять воздух при повышенных давлениях, что приводит к уменьшению объема рабочего тела, а следовательно, и габарита установки, В таких установках вместо воздуха используют более тяжелые газы и пизкокипящие вещества, папрнмер углекислоту. Замена воздуха углекислотой позволяет вместо компрессора применить насос, что повышает к. п. д. и надежность установки. Недостатком замкнутой схемы является большой габарит теплообменников.  [c.289]

Схема холодильной компрессорной установки, работаюш,ей на парах аммиака (NH3), представлена на рис. 21-8. В компрессоре сжимается аммиачный сухой насыщенный пар или влажный пар с большой степенью сухости по адиабате 1-2 до состояния перегретого пара в точке / (рис. 21-9). Из компрессора пар нагнетается в конденсатор, где полностью превращается в жидкость (процесс 1-5-4). Из конденсатора жидкий аммиак проходит через дроссельный вентиль, в котором дросселируется, что сопровождается ионижением температуры и давления. Затем жидкий аммиак с низкой температурой поступает в охладитель, где, получая теплоту (в процессе 3-2), испаряется и охлаждает рассол, который циркулирует в охлаждаемых камерах. Процесс дросселирования, как необратимый процесс, изображается на диаграмме условной кривой 4-3.  [c.336]

Как видно, основные потери приходятся на компрессор с теплообменным аппаратом и низкотемпературную противоточную вихревую трубу. Если потери в вихревой трубе трудноустранимы и связаны с ее необратимостью, а их уменьшение может быть достигнуто лишь в результате совершенствования процесса энергоразделения, то суммарные потери могут быть снижены использованием эксергии тепла. При этом отбираемое в теплообменнике тепло может использоваться на нафев сжатого воздуха, поступающего в вихревую трубу, работающую на генерацию нафетого потока в случае использования двухкамерного термостата. Вариант схемы двухкамерного термостата без утилизации тепла сжатого воздуха на входе из компрессора (рис. 5.17) позволяет полу-  [c.251]

Принципиальная схема установки (см. рис. 5.26) позволяет осуществить осушку воздуха при минимально возможных затратах по энергии в том случае, когда охлаждение осуществляется вихревыми трубами. Сжатый воздух от компрессора поступает на вход во влагоотделитель 7, где происходит предварительная его осущка. Предварительно осущенный воздух, проходя через теплообменный аппарат 2, охлаждается охлажденным потоком вихревой трубы 3 и подается во вторую ступень осушки во влагоотделитель 4, где осуществляется его окончательная осушка, после которой сжатый воздух, проходя через теплообменник 5, нагревается, и его относительная влажность снижается. Вихревая труба запитывается сжатым воздухом из обшей магистрали через эжектор 6, в котором в качестве активного используется сжатый воздух из магистрали, осушенный во влагоотделителе 7, а пассивного — охлажденный поток, отработавший в теплообменнике 2  [c.262]

Характерные особенности закрученного потока наиболее полно подходят для создания эффективной схемы конвективных и конвективно-пленочных систем охлаждения лопаток проточной части ГТД. В турбинных двигателях IV—VI поколений прослеживается тенденция использования больших степеней понижения давления газа в ступени (я > 2), что обусловливает возможность применения вихревых энергоразделителей (ВЭ) в охлаждаемых лопатках. По прогнозу к 2000 г. будут вводиться в эксплуатацию перспективные двухконтурные турбореактивные двигатели со степенью повышения давления в компрессоре до л = 60, с последней центробежной ступенью компрессора и противоточной камерой сгорания в этом случае на охлаждение соплового аппарата второй ступени удобно подвести воздух высокого давления из внутреннего кожуха камеры сгорания, и использование ВЭ становится перспективным.  [c.367]


В традиционной схеме высокотемпературного ГТД на охлаждение средней части и выходной кромки соплового аппарата используется воздух пониженного давления из промежуточной ступени компрессора или просочившийся через лабиринтные уплотнения ротора. Рабочее колесо охлаждается при этом воздухом с температурой, сниженной на несколько десятков градусов в аппарате предварительной закрутки. При этом между турбиной и компрессором создается полость для разфузки осевого усилия на опоры ротора (думисная система), где срабатывается до 1% сжатого в двигателе воздуха. Сброс дорогого воздуха обусловлен необходимостью понижения давления рабочего тела в этом пространстве. Снижение давления осуществляется стравливанием в  [c.382]

На рис. 106 дана схема возду)]пюп холодильной установки охлаждаемое помещение /, или холидилышя камера, в которой по трубам циркулирует охлажденный во здух компрессор 2, всасывающий этот во.здух и сжимающий его охладитель 3, в котором охлаждается сжатый в компрессоре воздух расширительный цилиндр 4, в ко-  [c.262]

Примеры плоских механизмов с низшими парами. Кривошипно-ползунный механизм (см. рис. 2.1 а — конструкция б — схема) — один из самых распространенных, он является основным механизмом в поршневых машинах (двигатели внутреннего сгорания, компрессоры, насосы), в ковочных машинах и прессах и т. д. На рис. 2.1, в изображена схема внёосного (дезаксиального) кривошипно-ползунного механизма.  [c.24]

ГОСТ 8732-70 материал по исполнительной документации — сталь 20 по ГОСТ 8732-70. Байпасная линия разрушилась на отдельные фрагменты неправильной формы с линейными размерами от 180 до 1300 мм при пуске компрессора. Ультразвуковая толщинометрия восемнадцати фрагментов байпаса показала, что толщина стенки трубы составляла 8,8-11,1 мм. Твердость металла — 206-215 НВ. Для установления очага разрушения фрагменты были обмерены, промаркированы, и в соответствии с линиями разрыва была разработана схема разрушения. На всех представленных фрагментах изучен характер изломов и определены направления распространения трещин, анализ которых позволил предположить, что очаг разрушения находился в сварном шве приварки байпасной линии к крану. Из этого шва были отобраны темплеты для исследования причин зарождения и развития разрушения. Установлено, что очагом разрушения явился участок сварного шва длиной - 50 мм, от которого началось лавинообразное развитие магистральных трещин с многочисленными разветвлениями и изменениями направлений. При изучении рельефа излома сварного шва были выявлены три зоны 1 — первоначальная трещина длиной до 45 мм и глубиной до 7 мм с очагами разрушения в дефектах сварки (подрез, несплавления) 2 — трещины, развившиеся в процессе эксплуатации байпасной линии 3 — долом с гладким срезом. Микроструктурный анализ показал, что начальная трещина развивалась в корневом шве по линии сплавления. В ходе анализа химического состава металла было установлено, что материал байпасной линии соответствовал стали 75 по ГОСТ 14959-79, на основании чего было сделано предположение, что для монтажа байпаса был использован участок трубы из обсадной или технической колонны марки Л, применяемой при обустройстве скважин. Механические свойства и хими-  [c.53]


Смотреть страницы где упоминается термин Компрессоры схемы : [c.41]    [c.216]    [c.53]    [c.395]    [c.265]   
Автоматические тормоза подвижного состава (1983) -- [ c.55 , c.57 , c.70 , c.72 , c.74 ]

Машиностроение Энциклопедический справочник Раздел 4 Том 12 (1949) -- [ c.641 ]



ПОИСК



Компрессор схемы осевых компрессоров

Компрессор-конденсаторы Схемы

Компрессорий

Компрессоры

Конструктивная схема осевого компрессора. Многоступенчатые компрессоры

Конструктивные схемы осевых компрессоров

Механизмы иглы и компрессоров - Схемы

Назначение компрессоров и схема их классификации

Основные схемы соединения поршневого двигателя с компрессором и турбиной (А. С. Орлим)

Принципиальные компрессоров поршневых золотниковые Схемы

Принципиальные компрессоров поршневых клапанные Схемы

Схема и принцип действия ступени осевого компрессора

Схема и принцип работы ступени осевого компрессора

Схема и принцип работы центробежного компрессора Основные параметры ступени

Схема работы компрессоров

Схема устройства поршневого одноступенчатого компрессора

Схема цепей управления вспомогательным компрессором

Схема цепей управления делителем напряжения и компрессором

Схемы и особенности работы центробежной и диагональной ступеней компрессора

Тепловые схемы установок со струйным компрессором

Характеристика игл и компрессоров - Схемы



© 2025 Mash-xxl.info Реклама на сайте