Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Активная синхронизация мод,

Методы синхронизации мод можно разделить на две категории 1) активную синхронизацию мод, при которой потери или усиление лазера модулируются внешним управляющим сигналом, и 2) пассивную синхронизацию мод, создаваемую соответствующим насыщающимся поглотителем  [c.312]

В качестве первого примера активной синхронизации мод рассмотрим случай, когда в резонатор помещен управляемый внешним сигналом модулятор, который создает синусоидальные во времени потери на частоте До . Если Аы ф Д(о, то эти потери приведут просто к амплитудной модуляции электрического поля E t) каждой моды резонатора  [c.313]


В качестве второго примера активной синхронизации мод предположим, что внутрь резонатора помещен управляемый внешним сигналом модулятор, у которого показатель преломления п изменяется с частотой Асо. Если модулятор расположен  [c.315]

В качестве третьего примера активной синхронизации мод рассмотрим случай, когда модулируется усиление лазера, а не его потери. Если данный лазер накачивается излучением другого лазера, модуляция усиления осуществляется, как правило, если лазер накачки работает в режиме синхронизации мод, причем длина L резонатора накачиваемого лазера регулируется та-  [c.316]

Лазеры с синхронизацией мод могут работать как с импульсной, так и с непрерывной накачкой (рис. 5.46). При импульсной накачке активная синхронизация мод достигается, как правило,  [c.320]

Теория активной синхронизации мод для однородно уширенной линии  [c.537]

Рис. В,1. Экспериментальное устройство, рассматриваемое при теоретическом анализе активной синхронизации мод. Рис. В,1. Экспериментальное устройство, рассматриваемое при <a href="/info/215419">теоретическом анализе</a> активной синхронизации мод.
Приложение В. Теория активной синхронизации мод 539  [c.539]

К числу основных модулей относятся задающие генераторы с фиксированной длиной волны, выполненные на основе твердотельных или ионных лазеров. В последнее время особый интерес вызывают высокостабильные лазеры на гранате с неодимом, работающие в режиме активной синхронизации мод или в сдвоенном режиме — синхронизации мод и модуляции добротности. Преобразование частоты задающих генераторов, как правило с уменьшением длительности, осуществляется методами нелинейной оптики (генерация гармоник, параметрическое преобразование частот) или путем накачки перестраиваемых по частоте лазеров (на красителях, центрах окраски, полупроводниковых или ВКР лазеров).  [c.240]

Для молекулярной спектроскопии и волоконной оптики большой интерес представляет спектральный диапазон 1,2—1,6 мкм. Повышение эффективности и стабильности красителей, накачиваемых излучением неодимовых лазеров, разработка специальных схем накачки позволили увеличить энергетическую эффективность пикосекундных лазеров до 10 % для красителей с временем жизни возбужденного состояния в единицы пикосекунд. В [18] сообщается о запуске фемтосекундного лазера (т =300 фс), перестраиваемого в диапазоне длин волн 1,25—1,35 мкм. Синхронная накачка производилась импульсами лазера на гранате с неодимом с активной синхронизацией мод, сжатыми в волоконно-оптическом компрессоре до 5 пс.  [c.248]


Рис. 6.8. Схема лазера на красителе, синхронно-накачиваемого второй гармоникой YAG Nd + лазера с активной синхронизацией мод, без разгрузки резонатора (с) и с разгрузкой (б) 1 — струя накачиваемого красителя, 2 — фильтр Лио, 3 — акустооптический дефлектор, служащий для периодического вывода импульса из резонатора Рис. 6.8. <a href="/info/565190">Схема лазера</a> на красителе, синхронно-накачиваемого <a href="/info/179087">второй гармоникой</a> YAG Nd + лазера с активной синхронизацией мод, без <a href="/info/144499">разгрузки резонатора</a> (с) и с разгрузкой (б) 1 — струя накачиваемого красителя, 2 — фильтр Лио, 3 — <a href="/info/172301">акустооптический дефлектор</a>, служащий для периодического вывода импульса из резонатора
В [22] проведено прямое экспериментальное исследование зависимости длительности импульса генерации Ти синхронно-накачиваемого лазера на красителе от длительности импульсов накачки (рис. 6.10). Импульсы накачки формировались из излучения второй гармоники YAG Nd + лазера с активной синхронизацией моде помощью волоконно-оптического компрессора, что позволяло изменять их длительность в широком интервале от 34 пс до 460 фс. Эмпирическая зависимость  [c.251]

Комбинированная синхронизация мод. При использовании метода пассивной синхронизации мод пикосекундных лазеров достигаются меньшие длительности импульсов и большая стабильность параметров излучения, а при активной синхронизации мод — более высокие энергетические характеристики. Одновременное использование обоих подходов в схемах синхронной накачки пикосекундных лазеров приводит во многих случаях к оптимальным результатам [28].  [c.253]

Причина такого свойства расстроенных характеристик заключается в том, что при комбинированной синхронизации мод активные среды могут компенсировать значительные расстройки резонаторов. Поглощающая среда вносит отрицательные задержки, а усиливающая — положительные. Отметим еще значительное повышение стабильности режима генерации по сравнению с чисто активной синхронизацией мод.  [c.254]

Другой подход к уменьшению длительности импульсов и повышению их спектрального качества основан на применении резонаторных ПГС с синхронной накачкой [42]. В режиме синхронной накачки сигнальный и/или холостой импульс после отражения от зеркал резонатора поступает в нелинейный кристалл одновременно с последующим импульсом накачки. В результате существенно возрастает эффективная длина усиления и, следовательно, уменьшается пороговая интенсивность накачки. Это обстоятельство позволяет использовать в качестве источника накачки не только цуги импульсов второй гармоники лазера на стекле или гранате с пассивной синхронизацией мод, но и системы с двойной модуляцией, работающие с частотой повторения цугов в единицы килогерц, и даже квазинепрерывное излучение лазеров на гранате с активной синхронизацией мод.  [c.258]

Уже в начале 80-х годов стало ясно, что перспективы генерации сверхкоротких импульсов УФ диапазона связаны с удвоением частоты лазеров на красителях и их последующем усилении в эксимерных усилителях. Трудности в осуществлении пассивной или активной синхронизации мод эксимерных лазеров вызваны, прежде всего, малыми временами существования инверсии в активной среде (10 —10 с), что резко ограничивает число проходов излучения по резонатору. К настоящему времени минимальная длительность, реализованная в режиме активной синхронизации мод, составляет 120 пс [74]. Итоги развития пикосекундных эксимерных систем подведены в обзоре [75].  [c.271]

Ч. Роудс и др. (США, 1986) [77] YAG Nd + лазер с активной синхронизацией мод KrF 248 350 2 1,5X1,0 20 60  [c.274]

Для генерации ультракоротких световых импульсов с помощью АИГ Nd-лазера успешно применяются различные методы. Для лазера с непрерывной накачкой применяется преимущественно метод активной синхронизации мод с использованием акустооптических или электрооптических модуляторов (см. гл. 4). В случае АИГ Nd-лазера с импульсной накачкой чаще всего с помощью пассивной синхронизации создается такой режим, при котором лазер испускает цуг ультракоротких импульсов (см. гл. 7).  [c.77]

Для генерации в непрерывном режиме лазерами на ионах благородного газа ультракоротких световых импульсов чаще всего используют активную синхронизацию мод, для осуществления которой применяют акустооптические модуляторы (см. гл. 4). Однако синхронизация мод может быть достигнута также и пассивным способом, например путем применения растворов красителей [2.5].  [c.80]


Метод активной синхронизации мод с помощью периодической модуляции параметров резонатора заключается в следующем. Внутри резонатора помещается модулятор, управляемый внешним сигналом и изменяющий потери резонатора (или другие его важные параметры, например оптическую длину пути) с течением времени по периодическому закону и с определенной частотой модуляции. Если частоту модуляции выбрать так, чтобы она равнялась частотному интервалу между модами для отдельных аксиальных мод, то вследствие модуляции для каждой моды начнется генерация побочных полос. Их частота будет совпадать с частотами обеих соседних мод. В результате этого эффекта между модами возникнет взаимодействие и при  [c.95]

Синхронизацию мод можно осуществить не только при помощи периодической модуляции потерь, но также и посредством периодической модуляции усиления. Это достигается путем накачки лазера цугом импульсов другого лазера с активной синхронизацией мод. Преимущество такого метода заключается в том, что он позволяет получать при периодической накачке импульсы, длина которых существенно меньше длины импульсов накачки. В случае лазера на красителе с синхронной накачкой можно, кроме того, в определенных диапазонах непрерывно перестраивать частоту генерируемых описанным способом ультракоротких импульсов.  [c.96]

В отличие от обычного лазер с активной синхронизацией мод содержит амплитудный или фазовый модулятор, размещаемый вблизи одного из зеркал резонатора (рис. 4.1). Частота  [c.134]

Рис. 4.1. Схема лазера с активной синхронизацией мод. Рис. 4.1. <a href="/info/565190">Схема лазера</a> с активной синхронизацией мод.
Рис. 4.2. Локализация во времени оптического импульса относительно модуляционного цикла при активной синхронизации мод. Рис. 4.2. Локализация во времени оптического импульса относительно модуляционного цикла при активной синхронизации мод.
Механизмы активной синхронизации мод лазеров с однородно и неоднородно уширенными линиями усиления сильно различаются.  [c.136]

Бнерация сверхкоротких импульсов. Для генерации СКИ в лазерах используют процесс синхронизации продольных мод резонатора лазера. Для синхронизации мод применяются пассивные и активные методы связывания фаз продольных мод лазера. При одинаковой фазе, навязанной всем продольным модам лазера, синфазное сложение амплитуд электрич, полей приводит к генерации СКИ, длительность к-рых ограничена шириной спектра генерации. В неодимовых лазерах, к-рые обычно используют в Ф. с., достигается генерация СКИ длительностью 10" — 10 с при помещении в оптич. резонатор лазера насыщающихся органич. красителей—для пассивной синхронизации мод, а также акустооптич. и эл.-оптич. модуляторов света—для активной синхронизации мод. В методе активной синхронизации мод сфазирование отдельных продольных мод осуществляется с помощью помещаемого внутрь резонатора модулятора для управления потерями резонатора внеш. периодич. сигналом с частотой, равной или кратной частотному интервалу между продольными модами резонатора лазера [3 ].  [c.280]

Другие важные дополнения включают в себя некоторые разделы традиционной оптики (например, метод матрицы лучей, интерферометр Фабри — Перо и многослойные диэлектрические зеркала), описание распространения гауссова пучка (закон AB D) и теорию релаксации колебаний и активной синхронизации мод.  [c.8]

Помеш,ение в резонатор частотного фильтра может радикально изменить ситуацию [6]. Авторы исследовали генерационные характеристики импульсного лазера на фосфатном стекле с активной синхронизацией мод и модуляцией добротности. В качестве фильтра использовался эталон Фабри — Перо толш,иной 0,25 мм с шириной полосы пропускания 15 см . Благодаря фазовой самомодуляции и ограничению полосы усиления длительность импульсов в цуге монотонно уменьшалась от 40 до 4 пс. Наивысшее спектральное качество достигалось в конце цуга.  [c.244]

Непрерывно накачиваемые твердотельные лазеры с активной синхронизацией мод. другим принципиально важным для фемтосекундной оптики классом задаюш,их генераторов являются непрерывно накачиваемые твердотельные генераторы с активной синхронизацией мод. Использование квазинепрерывных систем открывает широкие возможности на стадии обработки сигналов работа в режиме накопления, применение техники синхронного усиления, детектирования и т. д. Они генерируют импульсы длительностью 70—100 пс с частотой повторения 82—100 Мгц и средней выходной мош,ностью 7—Ю Вт. Стандартное отклонение флуктуаций выходной мош,ности на основной частоте излучения не превышает 1,5—2 %. Удвоение частоты в кристалле КТР приводит к следуюш,им значениям параметров т =30— 70 ПС, <Р> = 1,5—0,75 Вт, флуктуации мощности на уровне 2—3 %. Импульсы этихУлазеров на основной и удвоенной частотах успешно сжимаются с помош,ью волоконно-оптических компрессоров более чем  [c.244]

Твердотельные лазеры с активной синхронизацией мод и модуляцией добротности. Преимуш,ества импульсных (высокая энергия) и квазинепрерывных (высокая частота повторения, стабильность) систем удачно сочетаются в непрерывно накачиваемых твердотельных лазерах, работаюш,их в режиме активной синхронизации мод и модуляции добротности. Одна из возможных схем лазера с двойной модуляцией представлена на рис. 6.4 [7]. Синхронизация мод осуществля-  [c.244]


Авторы [48] реализовали 80-кратное сжатие импульсов второй гармоники YAG Nd + лазера с активной синхронизацией мод. Импульсы второй гармоники имели начальную длительность 33 пс, пиковую мощность 240 Вт и частоту повторения 100 МГц. Параметры входного излучения и сохраняющего поляризацию световода (длина 105 м, диаметр сердцевины 3,8 мкм) были согласованы так, чтобы реализовать оптимальный режим компрессии. Применялась двухпроходная схема решеточного компрессора, позволившая избежать дифракционного смещения лучей и получить на выходе импульсы с длительностью 410 фс и пиковой мощностью 1,2 кВт. В последующей работе  [c.260]

Нелинейная фильтрация и компрессия импульсов твердотельных лазеров с активной синхронизацией мод и модуляцией добротности. Преимущ,ества лазеров, работаюш,их в режиме двойной модуляции, детально обсуждались в 6.2. Главное из них — сочетание высокой импульсной мош,ности порядка 10 Вт с килогерцовой частотой повто-)ения. Для сжатия высокоэнергетичных импульсов как на основной 57], так и на удвоенной частоте [58], приходится применять сравнительно короткие отрезки световодов, L 1—10 м. Ограничение на длину световода определяется порогом вынужденного комбинационного рассеяния и приводит к неравенству /эфф1 16/ с, где g 10 см/Вт, эфф — эффективная интенсивность ( 5.5). В этом случае реализуется бездисперсионная фазовая самомодуляция, которая приводит к снижению энергетической эффективности компрессии и контраста сжатого импульса. Кроме того, лазеры с двойной модуляцией имеют более высокий уровень флуктуаций параметров излучения, что, естественно, дестабилизирует параметры сжатых импульсов.  [c.262]

Рис. 6.22. Схема экспериментальной установки для генерации мощных пикосекундных импульсов 1 — задающий генератор, выполненный в виде YAG Nd + лазера с активной синхронизацией мод, 2 — волоконный световод длиной 1,4 км, 3 — регенеративный усилитель, 4 — двухпроходный решеточный компрессор приведены временные распределения интенсивности и частоты в характерных точках схемы [72] Рис. 6.22. Схема <a href="/info/127210">экспериментальной установки</a> для генерации мощных <a href="/info/375410">пикосекундных импульсов</a> 1 — задающий генератор, выполненный в виде YAG Nd + лазера с активной синхронизацией мод, 2 — <a href="/info/32439">волоконный световод</a> длиной 1,4 км, 3 — регенеративный усилитель, 4 — двухпроходный решеточный компрессор приведены временные <a href="/info/174637">распределения интенсивности</a> и частоты в <a href="/info/405403">характерных точках</a> схемы [72]
Авторы [77] выбрали в качестве задающего генератора квазинепре-рывный YAG Nd + лазер с активной синхронизацией мод, который, после удвоения частоты, накачивал лазер на красителе с пассивной синхронизацией мод. Последний генерировал импульсы длительностью 1,5 ПС на длине волны 0,745 мкм при средней мощности 40 мВт. Они сжимались в волоконно-оптическом компрессоре до 150 фс и усиливались двухкаскадном усилителе на красителе, накачиваемом второй гармоникой YAG лазера с модулированной добротностью.  [c.272]

В экспериментах [101] (рис. 6.38) исследовалась стабильно-сть параметров излучения различных типов лазеров аргонового (с активной синхронизацией мод), синхронно-накачиваемого лазера на красителе, и кольцевого лазера с пассивной синхронизацией мод, работ ающего по схеме сталкивающихся в поглотителе импульсов. В частности, показано, что случайные дрожания импульсов накачки аргсонового лазера с характерным стандартным отклонением 20 пс и временем  [c.288]

Вообще возникновение периодических шумовых пичков в полупроводниковых лазерах с внешним резонатором хорошо известно и используется для активной синхронизации мод и генерации пикосекундных импульсов при модуляции тока питания на частоте основной гармоники шумовых пичков (см. литературу в [20]). Однако описанный метод эффективен только при небольшом превьииении порога. Поэтому в [20] сначала записывалось обращающее зеркало нужной эффективности при большой мошности генерации, а затем она снижалась и в течение медленной релаксации решетки (1 мин) наблюдались Ш1чки с Д 100 пс. Достигнутый результат является чрезвычайно важным и с практической точки зрения в связи со все более широким использованием полупроводниковых лаэеров в линиях связи, оптических процессорах и др.  [c.201]

Лазеры с неоднородно уши енной линией при достаточно большой накачке генерирует большое число продольных мод. В отсутствие модулирующего сигнала фазы мод распределены по законам статистики. Синхронизация мод достигается относительно просто, так как для нее достаточно возникновения слабого сигнала на боковой частоте. Этот сигнал служит затравочным для соседней моды и последовательно усиливается. Впервые активную синхронизацию мод Не—Ые-лазера % = = 0,633 мкм) с помощью акустооптического модулятора потерь экспериментально осуществили Харрис и Тарг [4.1]. Они получили периодическую последовательность импульсов длительностью около 2,5 НС. Детальный расчет активной синхронизации мод лазеров с неоднородно уширенной линией усиления был сделан Харрисом и Макдафом [4.2]. Основываясь на спектральном описании, они решили систему уравнений, учитывающую взаимодействие между модами, в предположении что накачка отдельных мод осуществляется независимо.  [c.136]


Смотреть страницы где упоминается термин Активная синхронизация мод, : [c.549]    [c.244]    [c.249]    [c.269]    [c.270]    [c.95]    [c.96]    [c.134]    [c.135]    [c.137]   
Принципы лазеров (1990) -- [ c.0 ]



ПОИСК



227 — Синхронизация

Временное описание активной синхронизации продольных мод в лазере с однородно уширенной линией усиления

Лазеры на ионах благородных газов с синхронизацией Экспериментальное исследование активной синхронизации мод лазера иа АИГШ

Нелинейная фильтрация и компрессия импульсов твердотельных лазеров с активной синхронизацией мод и модуляцией добротности

Основные механизмы, активная и пассивная синхронизация мод

Приложение В. Теория активной синхронизации мод для однородно уширенной линии

Синхронизация мод активна комбинированная

Синхронизация мод активна пассивная

Синхронизация мод активна полная (частичная

Твердотельные лазеры с активной синхронизацией мод и модуляцией добротности



© 2025 Mash-xxl.info Реклама на сайте