Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловые схемы и их расчет

ТЕПЛОВЫЕ СХЕМЫ И ИХ РАСЧЕТ  [c.292]

Учебное пособие содержит сведения о типах промышленных тепловых электрических станций, их общих характеристиках, принципах работы, схемах и основных показателях. Описаны отдельные элементы тепловых схем и способы расчета схем в целом. Приведены данные о выборе и расчете основного и вспомогательного оборудования электростанций и их компоновке. Большое внимание уделено технико-экономическому обоснованию выбора состава оборудования и режима его работы.  [c.245]


В первой главе рассмотрено назначение различных теплообменных аппаратов и их место в схемах ядерных установок. Во второй главе приведены типичные конструкции теплообменных аппаратов, их элементов и изложены некоторые технологические и эксплуатационные вопросы. В третьей и четвертой главах даны конкретные рекомендации по проведению тепловых, гидродинамических и прочностных расчетов. Вспомогательные материалы к этим главам помещены в приложениях.  [c.3]

Полную тепловую схему вновь проектируемой электростанции составляют на основе расчета принципиальной тепловой схемы и выбора основного II вспомогательного теплового оборудования электростанции. При выборе оборудования определяют количество аппаратов и их основные технические характеристики производительность и параметры.  [c.242]

Особенностью таких однородных групп узлов, с одной стороны, является взаимозаменяемость в процессе их проектной оптимизации, а также возможность изменения их количества, направленности процессов по участкам схемы теплообмена, последовательности расположения элементов и других компоновочных преобразований без существенного изменения общей конфигурации термодинамического цикла. Это создает возможности взаимосвязанных перестановок элементов и сравнительно свободного перемещения в пределах их однородной группы. С другой стороны, любые компоновочные преобразования отличаются дискретным либо комбинаторным характером изменения признаков вида тепловой схемы и типов конструкций. Это, а также сложность и трудоемкость теплотехнических расчетов служат причиной неразработанности методов решения задач оптимизации конструктивно-компоновочных параметров и характеристик оборудования и технологической схемы теплоэнергетических установок.  [c.40]

Составление и отладка программы многовариантных расчетов — трудоемкий процесс. При исследовании вариантов тепловых схем структура их может изменяться. При многократных изменениях числа элементов схемы и их взаимосвязи нецелесообразно изменять программу. Удобнее ввести в исходную информацию специальные условные числа (коды), определяющие число элементов (отсеков, турбин, подогревателей и др.), их основные характеристики и взаимосвязь. Эти коды составляют основу логической информации, отсутствующей при ручных расчетах.  [c.176]

Изложенный выше подход к составлению алгоритма и -программы расчета тепловой схемы — не единственный. В настоящее вре-. мя существует ряд программ, которые используются турбостроительными заводами и проектными организациями. В соответствии с конкретными целями расчета математическая модель тепловой схемы сочетается с моделями отдельных узлов турбоустановки и элементов схемы и их взаимосвязи.  [c.177]


Применение ЭВМ в теплоэнергетических расчетах не ограничивается тепловыми схемами электростанций. Их используют также в тепловых, гидравлических и механических расчетах теплоэнергетического оборудования электростанций. Совместная оптимизация тепловых схем и элементов оборудования имеет целью достижение минимума расчетных затрат по тепловой электростанции. Методы такой комплексной технико-экономической оптимизации профиля и параметров тепловых электростанций и их элементов с использованием ЭВМ разработаны и применяются отечественными институтами (Центральный котлотурбинный институт. Сибирский энергетический институт АН СССР и др.).  [c.177]

Теплообменное оборудование, комплектующее турбоустановки, показано в табл. 3.17. В табл. 3.18 приведены типоразмеры насосов, применяемых в тепловых схемах ПТУ их характеристики даны ниже (см. разд. 5). Проектирование тепловой схемы каждой конкретной электростанции в определенном смысле индивидуально в типовой проект могут вноситься изменения. Заводы-изготовители (прежде всего турбинные) могут вносить и вносят изменения в технические условия на изготовление как самой турбины, так и другого оборудования ПТУ. Поэтому данные табл. 3.17, 3.18 следует рассматривать как некоторый достигнутый уровень. Таблица 3.17 составлена таким образом, чтобы можно было восстановить тепловую схему ПТУ и с привлечением данных других таблиц раздела произвести ее расчет.  [c.296]

В последние годы были усовершенствованы методы расчета тепловых схем и элементов ГТУ и ПГУ с применением математического моделирования и компьютерной техники. В настоящее время значительное внимание уделяется прогрессивным технологиям сжигания топлива в камерах сгорания ГТУ и улучшению экологических показателей установок. При создании газовых турбин используются новые материалы, улучшаются системы охлаждения их элементов, применяются конструктивные схемы с повышенными значениями давления воздуха после компрессоров, с его промежуточным охлаждением, промежуточным перегревом газов в газовых турбинах, используются регенеративные циклы и схемы с впрыском пара и воды в ГТУ.  [c.3]

В научно-исследовательской лаборатории Газотурбинные и парогазовые ТЭС кафедры тепловых электрических станций Московского энергетического института (технического университета) разработаны методические основы дисциплины Газотурбинные и парогазовые установки электростанций , читаемой авторами студентам старших курсов. Под руководством авторов разработаны методики, алгоритмы и программные средства расчета и оптимизации тепловых схем и показателей ГТУ и ПГУ ТЭС и их элементов.  [c.3]

Оборудование котельной выбирают на основе расчета тепловой схемы котельной. Цель расчета тепловой схемы— определение расхода теплоносителей и их параметров по отдельным аппаратам котельной. Для расчета тепловой схемы составляют уравнение теплового и материального баланса всех элементов. Полученная система уравнений решается. В качестве основных исходных данных для расчета тепловой схемы берут расход теплоносителей потребителями, определяемый из графиков нагрузки, и параметры теплоносителей, которые зависят от вида технологического оборудования, принятой схемы отопления и других факторов.  [c.352]

Рассмотрены типы тепловых схем электростанций, принципы их составления и методы расчета, вопросы выбора оборудования, схемы трубопроводов и их расчет, типы компоновки главного здания и генерального плана электростанций.  [c.2]

Расчет диаметров трубопроводов производится на основании данных пароводяного баланса энергоустановки, которым определяются количества н параметры транспортируемых пара и воды. Материал и толщины стенок трубопроводов выбираются в зависимости от давления и температуры среды, проходящей по трубопроводу, в соответствии с правилами Госгортехнадзора. Обычно, исходя из расходов пара, воды или конденсата, определенных в расчетах тепловой схемы, и допустимых скоростей их, предварительно определяют требуемые диаметры трубопроводов по формуле (8-1), а затем подбирают по нормалям трубопроводы, соответствующие параметрам среды, проходящей через них, и повторным расчетом по формуле (8-2) проверяют фактические скорости они не должны быть больше допустимых.  [c.213]


При проектировании теплообменного аппарата конструктор выбирает форму рабочей поверхности, схему движения теплоносителей и их скорости, конструктивные параметры (диаметр трубок, расстояние между ними, расстояние между пластинами). При этом выполняется тепловой и гидравлический расчеты нескольких вариантов аппарата с тем, чтобы выбрать из них наиболее эффективный.  [c.463]

Проектирование трубопроводов начинают с разработки схемы их трассировки. Затем производят компоновку трубопроводов с тепломеханическим оборудованием выбирают их диаметры ria основе технико-экономических расчетов разрабатывают схемы и способы компенсации тепловых удлинений, продувок и дренажей проводят расчеты на самокомпенсацию трубопроводов, креплений, гидродинамические, прочностные, тепловой изоляции выбирают арматуру. Расчет трубопроводов на прочность проводят согласно нормам расчета элементов котлов на прочность.  [c.124]

Изложены основы проектирования энергооборудования блоков атомных электростанций (АЭС), рассмотрены тепловые схемы АЭС с перспективными типами реакторов, их термодинамические циклы, особенности конструкции и расчетов основных элементов энергетического оборудования блоков АЭС, особенности эксплуатационных режимов блоков АЭС, приведены их техникоэкономические показатели.  [c.429]

Сначала с помощью ППП СТРУКТУРА были определены оптимальное число и производительности источников теплоты. Оказалось, что для рассматриваемого уровня нагрузок эффективно исключить из схемы две небольших РК в узлах 7 и S и увеличить тепловую мош,ность ТЭЦ на 220 МДж/с, а пиковой котельной — на 116 МДж/с. Далее с помощью ППП СОСНА были определены необходимые мероприятия по реконструкции тепловых сетей. При этом рассматривалось несколько вариантов схем сети без новых участков с участком 8—9] с участками 11—12, 12—13 и 13—14. Расчеты показали, что включение в схему новых участков неэффективно (табл. 6.4), однако требуется увеличение пропускной способности существующих участков 15—16, 18—19, 20—21, 22—23 и 23—24 общей длиной около 1,5 км и установка насосной станции с напором 0,30 МПа на участках 15—16 и 17—18. Оптимальное решение по реконструкции системы, оптимальные зоны действия источников и их производительности показаны на рис. 6.14.  [c.137]

На втором этапе надо не переосмысливать расчеты первого этапа, а стремиться применить их практически, подобрав надлежащим образом элементы проточной части машин, аппараты и разного рода коммуникации тепловой схемы установки. Здесь допустима только небольшая корректировка расчетных результатов первого этапа проектирования, не нарушающая сделанных согласований.  [c.7]

Выбрав указанным образом места отборов пара для регенеративного подогрева питательной воды, можно откорректировать с позиций качества работы самого турбоагрегата давления регенеративных отборов pi, р2,. . pi,. .. и принять их для дальнейших расчетов. Однако проектирование всей тепловой схемы паротурбинной установки, как и самого турбоагрегата, требует еще корректировки и количеств отборов.  [c.115]

В связи с созданием и внедрением в энергетику крупных теплоэнергетических установок с высокими параметрами пара, усложнением их технологических схем и режимов эксплуатации, повышением требований к их экономичности и надежности необходимо выполнение трудоемких инженерных расчетных исследований, которые практически невозможно провести в нужные сроки без применения современных ЭВМ и методов математического моделирования. В то время как общие вопросы математического моделирования теплоэнергетического оборудования электростанций как объекта оптимизации получили большое отражение в литературе, вопросы теплового расчета статических и динамических характеристик основного теплоэнергетического оборудования на ЭВМ, методов математического моделирования стационарных и нестационарных режимов этого оборудования, специфики реализации этих методов на современных ЭВМ не систематизированы и недостаточно освещены в печати.  [c.3]

Следует считать непреложным правилом проектирования проверку расчетом всех участков трубопроводов теплового пункта независимо от их протяженности. К сожалению, весьма часто диаметры всех участков ставятся на глазок . Это особенно недопустимо при двухступенчатых схемах горячего водоснабжения, где потери напора в тепловых пунктах значительно возрастают. Весьма ценным пособием при проектировании тепловых пунктов являются альбомы типовых схем и конструкций, разработанные в институте Мосинжпроект и распространяемые библиотекой типовых проектов.  [c.265]

При поисковом (проектном) расчете по известным начальным и конечным температурам теплоносителей и их расходам определяется выбор конструкционной схемы, необходимая площадь поверхности теплообмена, обеспечивающая передачу заданной тепловой мощности.  [c.166]

Сравнение тепловой экономичности теплофикационных ПТУ при различных программах регулирования. Выше выполнен в общем виде термодинамический анализ, выявляющий общие качественные закономерности изменения удельного расхода теплоты при переходе к СД. Для количественной оценки эффективности СД он нуждается в дополнении детальными расчетами тепловых балансов применительно к конкретным агрегатам с тем, чтобы учесть их особенности (характеристики регулировочных ступеней, питательных насосов и их приводов, тепловые схемы, многоступенчатый подогрев сетевой воды и пр.). Ниже приведены резуль-  [c.176]

Достаточно общие методы и теория математического моделирования таких сложных объектов, как тепловая схема, должны разрабатываться с применением современных мощных вычислительных устройств. В этом случае отпадает необходимость в сложной и кропотливой работе, связанной с компактным представлением информации в памяти ЭЦВМ. Применение универсальных машинных языков облегчает составление программ и делает их легко обозримыми. Появляется возможность разработки автоматических программирующих программ, которые позволят исследователю при расчете каждой конкретной схемы давать о ней информацию в простой и удобной форме. Кроме того, представляется возможным поручить машине поиск оптимального направления расчета общей системы уравнений и неравенств, соответствующих схеме, использовав при этом строгие математические приемы.  [c.57]


При таком подходе к моделированию тепловой схемы паротурбинной установки АЭС отпадает необходимость в составлении и решении системы уравнений для всей схемы программа расчета должна содержать подпрограммы расчета отдельных элементов (подогреватель, пароперегреватель, отсек турбины, сепаратор и т. д.), объединенные подпрограммой управления расчетом схемы, которая определяет взаимосвязь элементов и последовательность их расчета. Подпрограмма расчета каждого элемента охватывает тепловой, гидродинамический, конструктивный и стоимостный расчеты конструкции. Конструкцию элемента можно изменить лишь заменой всей подпрограммы его расчета при сохранении неизменными параметров, связывающих рассматриваемый элемент с остальной частью схемы.  [c.82]

Существующие методики расчета атомных электростанций недостаточно полны, они не дают решения задач, подобных рассматриваемой, с приемлемой точностью, так как термодинамический расчет ведется обычно для идеальных процессов, а тепловыми, гидравлическими и прочими потерями либо пренебрегают, либо задаются и в дальнейшем их не уточняют. Подобный подход в какой-то мере может быть оправдан только для получения результатов по давно известным схемам с хорошо изученными рабочими телами в других случаях он может привести к неверным результатам.  [c.94]

Изложен метод исследования и численного расчета изменений экономичности ТЭС н АЭС при вариациях их тепловых схем, основанный на применении коэффициентов ценности теплоты или коэффициентов изменения мощности. Даны правила нахождения этих коэффициентов для реальных тепловых схем современных электростанций, приведены расчеты коэффициентов для схем типовых турбоустановок. Показано использование метода для графического анализа экономим ности реальных схем. Рассмотрен ряд примеров из проектной и эксплуатационной практики.  [c.2]

Применение повышенного графика температур при закрытой схеме требует изменения схем тепловых пунктов и их обязательной автоматпзац[1и (см. гл. 5). Внедрение повышенных графиков температур дает возможность значительно снизить расчетный расход сетевой воды, сделать его практически стабильным на всем диапазоне отопительного сезона, удешевить тепловую сеть н уменьшить расход электроэнергии на перекачку сетевой воды. Технико-экономические расчеты показали его значительные преимущества по сравнени.ю с обыч- 1ым графиком.  [c.44]

В главах V—IX мы рассматривали только тепловые процессы и расчеты элементов, - еп-ловой схемы и их взаимозависимость. Расчетная тепловая схема, подобная приведенной на фиг. 79, в гл. IX, называется обычно принципиальной и служит только для выбора элементов оборудования, определения параметров в отдельных точках и суммарных расходов пара, тепла и топлива за определенный период времени (час, год). После расчета такой схемы и выбора основных элементов оборудования для станции должна быть рааработана развернутая тепловая схема. По сравнению с принципиальной схемой в нее доЯолнительно включаются все рассмотренные выше элементы оборудования, аппаратуры, трубопроводов, баков и т. д.  [c.140]

При создании математических моделей для комплексной оптимизации параметров теплоэнергетических установок в СЭИ СО АН СССР разработаны метод и алгоритмы расчета тепловых схем [1, 64]. В основе метода лежало представление структуры тепловой схемы при помощи матрицы инциденций узлов и дуг графа, соответствующего рассчитываемой тепловой схеме, и задание матрицы функциональных связей между параметрами. Алгоритмы были реализованы применительно к ЭЦВМ среднего класса (БЭСМ-2М), что предопределило их недостаточную гибкость и универсальность.  [c.56]

По определенным суммарным расходам пара и горячен воды и вида топлива производится выбор типа, производительности и количества котлов. В котельных с общей тепловой мощностью (пар и горячая вода) примерно до 2 0 гДж/ч рекомендуется устанавливать только паровые котлы, а горячую воду для нужд отопления, вентиляции и горячего водоснабжения получать от пароводяных подогревателей. Для мощных котельных тепловой мощностью более 420 гДж/ч может оказаться рациональным применение комбинированных паровых котлов с гибкой регулировкой паровой и водогрейной нагрузкой. После выбора котлов производится выбор всего необходимого для их вспомогательного оборудования, т. е. теплообхменных аппаратов, аппаратуры водоиодготовки, насосов, баков и пр. Все выбранное оборудование наносится на тепловую схему. Условными линиями изображают трубопроводы для различного вида жидкостей, пара и газа. Сложные тепловые схемы котельных с паровыми, водогрейными и пароводогрейными котлами определяют необходимость расчета тепловых схем методом последовательных приближений. Для каждого элемента тепловой схемы составляют уравнение материального и теплового балансов, рещение которых позволяет определить неизвестные расходы и энтальпии сред. Общая увязка этих уравнений осуществляется составлением материального и теплового балансов деаэратора, в котором сходятся основные потоки рабочего тела. Ряд значений величин, необходимых для увязки тепловой схемы, получают из расчета ее элементов и устройств. Рядом значений величин можно предварительно задаваться. Например, на деаэрацию питательной воды и подогрев сырой и химической воды при закрытой системе водоснабжения от 7 до 10 % суммарного отпуска тепловой энергии внещним потребителям на потери теплоты внутри котельной 2—3 % той же величины.  [c.302]

Рас.ходы пара на собственные нужды ТЭЦ зависят от паропроизводительно сти котельной (конечной величины расчета тепловой схемы) и иепосредстБенио из заданных тепловых нагрузок не могут быть определены. Для расчета их сначала определяют ориентировочно требуемую паропроизводительность котельной О к, что нетрудно сделать, лпая расходы пара ппсптнпмп потребителями и пользуясь диаграммами режимов паровых турбин [Л. 17].  [c.68]

Проектирование должно вестись одновременно с проектированием и разработкой тепловой схемы установки. Должны быт получены решения отдельных задач проектирования, согласованные с технико-экономическими и иными требованиями к установке, обеспечивающими функции судна, для которого проектируется энергетическая установка. Предполагается, что на этом этапе необходимо выполнить несколько вариантов проекта установки, чтобы после сопоставления их выбрать наилучший. Поэтому, соблюдая необходимую и достаточную степень точности расчетов, следует сделать их возможно более простыми и малотрудоемкими.  [c.6]

Тепловая установка, потребляюш,ая топливо или другой вид энергии, должна иметь технический паспорт, составленный на основе тщательно проведенных измерений различных показателей ее работы во время специальных теплотехнических испытаний и во время длительной эксплуатации. К паспорту должны быть приложены рабочие чертежи, размеры в которых уточнены по фактическому выполнению. Особенное значение имеют размеры рабочего пространства, его ограждений, длины и сечения дымоходов, позволяюш,ие рассчитывать тепловые балансы и аэродинамические сопротивления. Перед проведением теплотехнических испытаний производится полный осмотр установки, устраняются все недостатки, производится анализ записей в эксплуатационных журналах и показаний контрольно-измерительных приборов. Составляются программа исследований, а также схема расстановки дополнительных контрольно-измерительных приборов повышенной точности. Тепловые характеристики, положенные в основу рекомендуемых наивыгоднейших режимов, должны быть составлены только на основании экспериментальных данных, так как определение их посредством теоретических расчетов обычно недостаточно ввиду сложности явлений, протекающих в реальных условиях.  [c.20]


Кроме того, проведены расчетные исследования по применению метода скользящего начального давления пара для регулирования нагрузки паровой турбины изменением давления пара на входе в турбину при пропуске пара через группу полностью открытых регулирующих клапанов. Расчеты проводились в ЦНИИКА на ЭВМ БЭСМ-4 по исходным данным ЛМЗ для тепловой схемы турбоуста-повки К-300-240 (Л. 31] на различные нагрузки и давления. Особое внимание при подготовке информации было уделено определению зависимости внутреннего к. п. д. головного отсека турбины от нагрузки и начального давления. Результаты расчетов экономичности всей турбоустановки представлены в [Л. 31]. Их анализ показывает, что для каждой фиксированной нагрузки зависимость удельного расхода тепла от давления имеет немонотонный характер. Минимумы обнаружены при давлениях, соответствующих началу открытия второй и третьей групп клапанов, причем на низких нагрузках глобальный минимум соответствует началу открытия второй группы, а на более высоких нагрузках (выше 200 кг/с)—началу открытия третьей группы клапанов. Полученные данные позволяют построить оптимальную по экономичности программу нагружения турбины за счет открытия клапана турбины по группам и повышения нагрузки путем увеличения давления.  [c.36]

Приведенные величины к. п. д. установок, подтверждая правильность полученных результатов расчетов тепловых схем установок а, б и в и выводов,, сделанных на основе их сравнения, показывают большое значение для достижения высокой тепловой экономичности ряда факторов экономичности исходного цикла, экономичности турбин, снижения потерь рабочего вещества и рассеяния тепла системой трубопроводов станции, экономичности котельной установки, применения регенеративного процесса, полной загрузки турбоагрегатов двухзального типа (на надстройках высокого давления). Результаты расчетов показывают, кроме того, важность повышения температуры перегрева пара при повышении начального давления.  [c.224]

Практическая ценность работы для заводов и проектных организаций заключается в критическом анализе конструкций ртутнопарового оборудования, в выявлении путей их совершенствования, а также в большом экспериментальном материале, необходимом для расчетов при проектировании ртутнопаровых установок, и в детальном анализе тепловых схем конденсационных установок и ТЭЦ с ртутнопаровым циклом и их показателей.  [c.4]

Создан ряд новых конструкций пылеконцентраторов, горелок и систем пылеприготовления с ними, 14 из которых защищены авторскими свидетельствами СССР и НРБ, патентами ГДР, Индии, ПНГ, ФР1 [Л. 20, 79—81 90 93—97 102 123 125 126]. Разработаны рекомендации по расчету пылеконцентраторов и их компоновке с топочным оборудованием. Проведены промышленная проверка, наладка и исследование головных образцов котлоагрегатов, оснащенных схемами с пылеконцентра-торами, и начато широкое внедрение их в промышленность. Для ряда отечественных и зарубежных топлив проведены на стендах и в промышленности исследования процесса выгорания пыли в зоне ядра факела, теплообмена в топочных камерах. Проведенный цикл исследований позволил вскрыть причину эксплуатационных трудностей при сжигании бурых углей Дальнего Востока (особенно бикинского) и найти решения по устранению этих трудностей, установить, что при схеме прямого вдувания и подсушке топлива топочными газами улучшается радиационный теплообмен в топках по сравнению с воздушной сушкой и что наличие пылеконцентраторов дополнительно интенсифицирует данный процесс. Внесенные на этой основе изменения в нормы теплового  [c.10]


Смотреть страницы где упоминается термин Тепловые схемы и их расчет : [c.109]    [c.87]    [c.370]    [c.643]    [c.319]    [c.59]    [c.267]   
Смотреть главы в:

Котельные установки  -> Тепловые схемы и их расчет

Котельные установки  -> Тепловые схемы и их расчет



ПОИСК



678 — Расчет 698, 699 Схемы

Компоновка, тепловая схема и задачи теплового расчета

ПРИНЦИПИАЛЬНАЯ ТЕПЛОВАЯ СХЕМА ЭЛЕКТРОСТАНЦИИ И ЕЕ РАСЧЕТ Г лава двенадцатая. Принципиальная тепловая схема

Полные тепловые схемы электростанций и методы их расчета

Принципиальная тепловая схема АЭС, расчет

Принципиальная тепловая схема АЭС, расчет КЭС, расчет

Принципиальная тепловая схема АЭС, расчет с турбиной

Принципиальная тепловая схема АЭС, расчет энергоблоком

Расчет влияния схем включения испарителей в тепловую схему станции

Схема теплового расчета теплообменного аппарата

ТЕПЛОВАЯ СХЕМА СТАНЦИИ И ЕЕ РАСЧЕТ Элементы тепловой схемы

Тепловая схема ТЭС

Тепловая схема и общие положения теплового расчета котла

Тепловая схема полная расчет, составление

Тепловые схемы паротурбинных электростанций и их расчет



© 2025 Mash-xxl.info Реклама на сайте