Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефект координаты

Точность измерения координат дефектов. Координаты Н и L расположения отражателя (дефекта) можно определить тремя способами. При первом способе измеряют временные сдвиги эхо-сигналов Tj и Tj от отражателя при некоторых произвольных положениях преобразователя и расстояние to между этими положениями (рис. 5.20). Затем по значениям Т , 1, /д, скорости упругой волны Са в контролируемом материале и времени 2/д распространения ультразвука в призме преобразователя рассчитывают координаты Н я Ь.  [c.233]


Конструктивно все ПЭП выполнены в цилиндрических корпусах одинакового размера и размещены в блоке. ПЭП, закрепленные в разрезных кольцах, имеют возможность дискретного поворота на 90°, что обеспечивает прозвучивание как вдоль оси валка, так и по хорде. Блок ПЭП, являясь самоцентрирующимся на цилиндрической поверхности валка, устанавливается на нем в рабочем положении с помощью специального шарнирного устройства. Для обеспечения акустического контакта в щелевой зазор под каждым ПЭП подается контактная жидкость. Электронный блок содержит четыре канала, три из которых задействованы для поиска дефектов и один для слежения за качеством акустического контакта. На ленте самописца регистрируют амплитуду сигнала от дефекта и дна, условную протяженность дефекта, координаты дефекта. Производительность контроля 0,4. .. 1,0 м/с.  [c.377]

Основными характеристиками выявленных дефектов являются эквивалентная площадь дефекта S или амплитуда U эхо-сигнала от дефекта с учетом измеренного расстояния до него условные размеры дефекта условное расстояние между дефектами координаты дефекта в сечении шва с учетом типа и размеров соединения число дефектов на определенной длине шва.  [c.516]

Каким путем определяются координаты дефекта  [c.166]

Кинетика выделения фаз при распаде твердых растворов. Распад с выделением фаз происходит по механизму образования и роста зародышей в соответствии с общими закономерностями этого механизма. Помимо затрат выделившейся объемной свободной энергии на приращение поверхностной энергии и компенсацию энергии упругих деформаций, образование зародышей тормозится еще и необходимостью больших флуктуаций концентрации. Поэтому для начала распада требуются большие степени переохлаждения (пересыщения) и длительные выдержки при соответствующих температурах. В то же время при данных температурах должны заметно развиваться процессы диффузии растворенных компонентов. Общая скорость образования новой фазы в зависимости от степени переохлаждения описывается кривой с максимумом. Чем больше степень переохлаждения, тем меньшие размеры имеют устойчивые зародыши, способные к росту. В координатах температура — время процесс описывается С-образной кривой. В реальных металлах возникновение зародышей облегчается наличием дефектов кристаллического строения.  [c.497]

Ультразвуковая дефектоскопия аппаратов должна проводиться в соответствии с требованиями ГОСТ 14782 и ОСТ 26-2044. УЗД предназначена для контроля продукции на наличие дефектов (обнаружение дефектов) типа нарушений сплошности и однородности материалов и их сварных соединений для измерения глубины и координат их залегания.  [c.203]


Координаты дефекта по сечению и длине шва.  [c.208]

Анализ данного выражения показывает, что с увеличением толщины прослойки аг или при уменьшении размера дефекта Д координата линии разветвления стремится к вершине последнего. Например, в соединении с толстыми прослойками  [c.46]

Современные дефектоскопы снабжены устройствами для измерения амплитуды и времени прихода отраженного сигнала. Градуированные приборы для измерения амплитуды, встроенные в дефектоскоп, называют аттенюаторами. Имеющиеся в дефектоскопах глубиномеры и измерители координат дефектов дают информацию непосредственно в единицах длины. Дефектоскопы имеет также световой и звуковой сигнализатор дефектов и другие вспомогате.льные элементы.  [c.179]

Рассмотрим еще один принципиальный вопрос — колебания атомов в цепочке при наличии дефекта. Заменим атом цепочки, находящийся в начале координат, более легким атомом [4, 47]. Тогда под влиянием колебаний этого атома близлежащие атомы будут колебаться несколько иначе, чем атомы, расположенные вдали от него. Пусть масса дефектного атома будет равна М, а всех остальных — М. Предположим также, что константы межатомной связи существенны лишь для ближайших соседей и не зависят от сорта соседствующих атомов. В этом предположении уравнения движения будут иметь вид  [c.219]

Многие современные измерительные проекторы имеют фотоэлектрические или магнитные датчики, позволяющие регистрировать перемещения стола на табло цифрового индикатора с точностью до 0,005 мм. С помощью некоторых проекторов можно определять полярные координаты дефектов.  [c.57]

Расшифровщик по изображению дефекта на снимке определяет его координаты. а также размеры (ширину и длину). Глубину залегания дефекта находят, просвечивая изделия со смещением источника излучения. В этом  [c.332]

Радиометрические методы позволяют определить две координаты дефекта протяженность и его лучевой размер.  [c.385]

Из (126) н (125). чля четных h х, у, г) с максимумом в начале координат, куда без потери общности размещаем дефект, имеем  [c.442]

На рис. 7 показано изменение нормальной составляющей напряженности магнитного поля рассеяния дефекта прямоугольного сечения и ее производных по координате х, когда ширина раскрытия дефекта равна 0,1 /о, а глубина принимает последовательно значения 0,1г/о (/) 0,5i/o (2) 0,7t/o (5) 11/о( )(Уп—ордината точки наблюдения).  [c.25]

Изменение нормальной составляющей поля и ее производных в функции координаты поперечного сечения х при постоянной глубине дефекта, равной 0,Ьус, и переменной ширине раскрытия — 0,1уо 1) 0,7уо (2) 2уо (3) Ъуа 4) показано на рис. 8. С увеличением ширины дефекта амплитуда напряженности магнитного поля увеличивается, а для производных при 6 i/o несколько уменьшается.  [c.26]

Глубиномер 12 служит для определения координат отражателей (дефектов) путем измерения времени пробега импульса до отражателя и обратно Он выполнен в виде шкалы на экране ЭЛТ или устройства, генерирующего вспомогательный импульс (см. рис. 43), перемещаемый по линии развертки при повороте калиброванной шкалы, либо серию вспомогательных импульсов, разделенных заданными интервалами. В наиболее совершенном виде устройство дает цифровую индикацию расстояния от преобразователя до отражающей УЗК неоднородности.  [c.229]

Координаты дефектов Н и L (рис. 49) определяют относительно точки ввода О. Решение задачи сводится к нахождению положения преобразователя  [c.237]

Рис. 49. Схема определения координат дефектов при контроле наклонным преоб разователем Рис. 49. Схема <a href="/info/580944">определения координат дефектов</a> при <a href="/info/694299">контроле наклонным</a> преоб разователем
Формулы для расчета относительных систематических погрешностей измерения координат дефекта  [c.239]

Определение образа выявленного дефекта. Целью НК является не только обнаружение дефектов, но и распознавание их образа для оценки потенциальной опасности дефекта. Методы визуального представления дефектов эффективны, когда размеры объектов (дефекта в целом или его, фрагментов) существенно превышают длину волны УЗК. Кроме того, эти методы требуют применения довольно сложной аппаратуры. В практике контроля дефекты идентифицируют по признакам, рассчитанным по измеренным характеристикам дефектов посредством дефектоскопов с индикатором типа А. Словарь признаков приведен в табл. 16, где t/д, t/д (а , t/д/ — амплитуды эхо-сигналов от дефекта при контроле сдвиговыми волнами с углом ввода o q и а. и продольными волнами с углом, ввода а соответственно Uo, Uq ( з), Uoi — амплитуды эхо-сигналов от цилиндрического отражателя СО № 2 (№ 2а) — амплитуда эхо-сигнала сдвиговой волны, испытавшей двойное зеркальное отражение от дефекта и внутренней поверхности изделия ( о) и Яд(ос2) — координаты дефекта при угле ввода о и 2 соответственно А1д, АХд, АЯд — условные размеры (протяженность, ширина и высота) дефекта ALq, АХо, АЯо — условные размеры ненаправленного отражателя на той же глубине, что и выявленный дефект Уд — угол ориентации дефекта в плане соединения (азимут дефекта), Ауд. ц, Ауд. к— углы индикации дефекта в его центре и на краю соответственно при поворотах преобразователя от центра дефекта Ауд—угол индикации бесконечной плоскости на заданном уровне ослабления при повороте искателя в одну сторону б — толщина соединения I — расстояние от точки выхода луча до оси объекта.  [c.243]


Измерение координат точек дефекта. Особенно интенсивными источниками дифракционных волн являются особые точки, лежащие на границе свет— тень, где поверхность дефекта имеет большую кривизну. Особыми точками являются, в частности, края плоскостного дефекта (см. рис. 57, е). Если поверхность дефекта гладкая, то зеркально отраженная волна не будет принята преобразователем 1, но краевые точки дадут сигналы Ti ч Т4. Преобразователь перемещают по контактной поверхности до получения максимального эхо-сигнала от краевых точек, а затем измеряют их координаты и таким образом оценивают размер и ориентацию дефекта. Сигналы Ti и Tфазу начального колебания (в отличие от сигналов Т—Т и T—R—Т2 на рис. 57, а). Интерференция сигналов Tj и является причиной больших осцилляций в спектре отражения от плоского дефекта (см. рис. 56 в и г).  [c.249]

Расчет ослабления амплитуды при контроле теневым методом. На диаграмме, приведенной на рис. 58, в безразмерных координатах показано максимальное ослабление Ко сигнала дефектом, расположенным посередине между одинаковыми излучающим и приемным преобразователями. Заштрихованные зоны соответствуют разбросу, вызываемому различной формой и длительностью излучаемых импульсов, Если дефект расположен не посередине, то, пользуясь графиками (рис. 59), можно учесть его смещение в сторону излучателя или приемника.  [c.250]

Точность определения координат дефектов. Координаты дефектов х и у (рпс. 57) определяют относительно точкп ввода О. Решение задачи сводится к нахождению положения искателя на поверхности изделия, соответствующего максимальной амплитуде эхо-сигнала, и определению времени I пробега импульса от пьезопластины искателя до дефекта. Тогда  [c.216]

Для регистрации результатов УЗ-контроля применяется также цифропечатающая техника. В нескольких колонках цифр фиксируются основные оперативные параметры контроля амплитуда э чО-сигиалов, глубина и условная протяженность дефекта, координаты положения преобразователя. Для осуп1ествления миогопараметровой цифровой регистрации используются за1юминающие  [c.211]

Местоположение и протяженность локальных участков газопроводов, на которых существуют условия КРН. Местоположение и параметры стресс-коррозионных дефектов. Общее число выявленных дефектов. Координаты и общее число труб, пораженных стресс-коррозией Классификация стресс-корроэионных дефектов по степени их опасности.  [c.80]

Отраженные от дефекта импульсвл упругих колебаний подаются на пьезопластину и преобразуются в ней в электросигналы. Эти колебания усиливаются в усилителе, затем подаются кл экран электронно-лучевой трубки. При развертке расстояние от зондирующего импульса до принятого сигнала пропорционально времени прохождения импульса от пьезонластипы до дефекта и обратно. По числовому значению скорости и времени прохождения ультразвука можно определить координаты дефекта. Отклонение луча на электронно-лучевой трубке в вертикальном направлении характеризует амплитуду с сигнала и пропорционально значению размера дефекта.  [c.132]

АЭ-метод выступает как самостоятельный, если по его оценке, полученной на основании критериального анализа зарегистрированной АЭ-информации от источников-де(()ектов, состояние объекта признается удовлетворительным. В противном случае для окончательной оценки привлекаются дополнительные методы НК. Наибольшую надежность оценки дает применение АЭ-метода в комплексе с такими т )адици-онными методами, как визуально-оптический, капиллярный, магнитопорошковый, ультразвуковой, рентгеновский. Эффективность комплексного контроля в этом случае определяется тем, что в задачу АЭ-метода входит выявление АЭ-активных источников и определение их координат или зон их расположения, обеспечивающих многократную минимизацию объемов последующего контроля традиционными методами. Последние дополняют предварительную АЭ-оценку состояния объекта сведениями о геоме фических параметрах и степени опасности выявленных дефектов (размерах, форме, ориентации и глубине залегания).  [c.264]

Общий вид зависимости проводимости в координатах In а от с учетом всех перечисленных механизмов переноса представлен на рис. 11.8. Область 1 соответствует переносу по нелокализо-ванным состояниям, 2 — по состояниям в хвостах зон, 3 п 3 — по локализованным состояниям вблизи уровня Ферми. При этом на участке 3 выполняется закон Мотта. Если плотность состояний, связанных с дефектами, велика, то следует ожидать, что не будет такого интервала температур, где процесс 2 был бы доминирующим. В этом случае участок 3 сразу переходит в участок 1.  [c.362]

Проведя серию экспериментов на моделирующих сварные соединения образцах с различным местоположением плоскостных дефектов, бьш сделан вывод о том, что при значениях Л/h < 0,1 смещение линии разветвления пластического течения от вершины дефекта пренебрежимо мало и находится практически на вершине дефекта. В качестве примера на рис. 2.6 показаны картины муаровых полос и сетки линий скольжения для образцов с данными дефектами, а на рис. 2.7 сопоставление теоретических (по методу линий скольжения) и экспериментальных даннь1Х при нахождении координаты линии разветвления пластического течения для образцов с плоскостным дефектом [ /В = 0,125,  [c.46]

Экспериментальную проверку предложенных в предыдущих разделах расчетных методик по оценке прочности свар ных соединений с плоскостньпли дефектами проводили на разрывной машине ЦЦМ-200 Пу с фиксацией картин муаровых полос (на плоских образцах) и с записью диаграммы а ,р—н/ (а р — средняя удельная нагрузка, vj/ — относительное сужение) на цилиндрических образцах. В последнем случае по ослабленному сечению прослойки устанавливали специальный электромеханический датчик перемещений, позволяющий с помощью металлической струны следить за изменением поперечного сужения образца (рис. 2.24). Величина усилия снималась специальным электромеханическим датчиком с силоизмерителя машины. Запись диаграммы осуществляли с помощью двухкоординатного самописца ПДП 4-002 в координатах Р— и (усилие—перемещение) с последующим пересчетом на нагрузку—сужение  [c.74]


По числовому значению времени пробега УЗК (при заданной скорости их прохождения, которая является характеристикой материс1ла) можно определить координаты дефекта,  [c.178]

В настоящее время наиболее распространенным из отечественных УЗ-дефектоскопов является дефектоскоп марки УД2-12, а толщиномеров — УТ-93П. В ЦНИИТМАШе разработан УЗ-дефектоскоп УДЦ -105 М, который обеспечивает автоматизированное измерение эхо-сигнала и его отображение на цифровом табло. В дефектоскопе марки УДЦ-100 также имеются 1налогичные возможноеги, а на цифровом табло отображаются координаты залегания дефектов. Высокой степенью автоматизации обладает дефектоскоп УЗД-18, предназначенный для контроля сварных соединений с толщиной до 60 мм. Дефектоскоп УЗД-22М (МГТУ им. Баумана) обладает гювышенной чувствительностью и имеет возмож-тюсть выдавать распечатку координат и формы дефектов.  [c.179]

В отличие от методов просвечивания, ультразв>тсовые методы позволяют успешно выявлять именно трещиноподобные дефекты. Спецификой ультразвукового метода контроля является то, что он не дает конкретной информации о характере дефекта, так как на экране дефектоскопа появляется импульс, величина которого пропорциональна отражающей способности обнаруженного дефекта. Последняя зависит от многих факторов размеров дефекта, его геометрии и ориентации по отношению к направлению распространения ультразвуковых колебаний. В связи с тем, что эти параметры при контроле остаются неизвестными, обнар> -женные дефекты обычно характеризуются эквивалентной площадью, которая устанавливается в зависимости от интенсивности полученного сигнала Достоинствами л льтразвукового метода являются его меньшая по сравнению с методами просвечивания трудоемкость, а также возможность достаточно точного определения координат обнаруженного дефекта. Как показала практика применения ультразвукового метода, он не позволяет достаточно надежно обнаружить дефекты, лежащие вблизи поверхности изделия в связи с экранированием сигнала от дефекта сигналом ог поверхности. Это обстоятельство также необходимо ч читы-вать при практическом использовании данного метода контроля. Ультразвуковые методы используют как для контроля дефектов металла листов и поковок на стадии их изготовления, так и для контроля сварных соединений, для диагностики трубопроводного транспорта. На данном принципе созданы внутритрубные инспекционные снаряды (ВИС) — Ультраскан-СД, которые, двигаясь внутри трубы, считывают информацию о техническом состоянии трубопроводов. При этом фиксируется толщина стенки, коррозионные каверны, расслоения мета.лла, дефекты стресс-коррозионного происхождения.  [c.61]

С помощью каверномера можно выявить общую картину коррозионных процессов. Так, на основании полученных данных (таблицы) строят графики в координатах глубина язв — число пораженных коррозией труб. Расположение прямой на графике может указывать либо на равномерное наличие по всей колонне труб крупных или мелких коррозионных дефектов, либо на наличие мелких и крупных дефектов на малом числе труб, либо на тенденцию к утончению стенки по колонне труб. При нескольких обследованиях, смещенных по времени, сопоставляя графики, выявляют направление развития коррозионных процессов (усиление, стабилизацию, замедление). Удовлетворительное состояние труб тем не менее требует обязательного проведения кавернометрии не менее чем на 20% скважин.  [c.145]

Основной характеристикой температурного поля, являющейся индикатором дефектности, служит величина локального температурного перепада. Координаты места перепада, его рельеф или, иными словами, топология температурного поля и его величина в градусах являются функцией большого количества факторов. Эти факторы можно разделить на внутренние и внешние. Внутренние факторы определяются теплофизическими свойствами контролируемого объекта и дефекта, а также их геометрическими параметрами. Эти же факторы определяют временнйе параметры процесса теплопередачи, в основном, процесса развития температурного перепада. Внешними факторами являются характеристики процесса теплообмена на поверхности объекта контроля (чаще всего величина коэффициента конвективной теплоотдачи), мощность источника нагрева и скорость его перемещения вдоль объекта контроля.  [c.116]

Возможности выявления дефектов при резонансных методах радиодефектоскопии в полупроводниках, ферритах и диэлектриках определяются потенциальной и реальной чувствительностью. Поскольку для выделения сигнала, несущего информацию о дефекте при резонансных методах радиодефектоскопии (РМРД), нет принципиальной необходимости в пространственной локализации излучения при обнаружении дефектов (если не ставится задача определения их координат и геометрии), то РМРД позволяют выявлять существенно меньшие дефекты, чем другие радиометоды.  [c.237]

Таким образом метод ПРВТ обладает на порядок более высокой чувствительностью контроля при обнаружении сферических локальных дефектов в толстых изделиях со сложной геометрической структурой при одновременном определении координат дефекта в трехмерном объеме изделия с точностью выше Дг = 12км- Отметим, что согласно (135) на чувствительность контроля сферических дефектов экспозиция и толщина контролируемого слоя влияют относительно слабо.  [c.444]

Однако даже при средних метрологических характеристиках, несмотря на более низкое, чем у традиционной радиографии, пространственное разрешение. ПРВТ обладает значительными преимуществами в обнаружении и определении координат локальных дефектов всех видов внутри объема сложных промышленных изделий.  [c.445]

Анализ показывает, что невозможно объективно определить геометрический размер дефекта по амплитуде сигнала входного преобразователя, так как последняя зависит не только от глубины дефекта, но и от ширины его раскрытия. В то же время наблюдается некоторое соответствие между шириной раскрытия дефекта и изменением нормальной составляющей магнитного поля рассеяния дефекта и ее производных по координате х. По длительности сигнала в Первом приближении можно установить, к какому диапазону ширины раскрытия принадлежит дефект, и затем по амплитуде сигнала оценить примерную глубину дефекта. Для такой оценки целесообразно пользоваться этало-  [c.26]

Направленность поля преобразователя, характеризуемая его диаграммой направленности, определяет погрешность измерения координат и условных размеров дефектов. Числовыми характеристиками диаграммы направленности является угол наклона акустической оси ао и угол раскрытия основного лепестка 2ф. Углы о и 2ф дчаграммы направленности могут быть измерены по СО № 2, СО № 2А или на специальной. установке с элек-тро-магнитоакустическим приемником.  [c.237]

Координаты дефекта 1д и Яд определяют по показаниям глубиномерного устройства, когда метка глубиномера на экране осциллографического индикатора совмещена с эхо-импульсом. При этом преобразователь дефектоскопа должен быть установлен в положение, соответствующее максимальному значению амплитуды эхо-сигнала.  [c.243]


Смотреть страницы где упоминается термин Дефект координаты : [c.206]    [c.100]    [c.122]    [c.137]    [c.45]    [c.469]    [c.454]    [c.180]    [c.249]   
Ультразвуковая дефектоскопия (1987) -- [ c.134 , c.135 ]



ПОИСК



Методы измерения координат, величины и оценки характера дефектов

Методы определения величины, координат и характера дефектов

Определение координат дефектов

Оптические переходы в дефектах кристаллической решетки, конфигурационные координаты

Основные погрешности при измерении координат и величины дефектов

Точность определения координат дефектов



© 2025 Mash-xxl.info Реклама на сайте