Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбин газовых конструкции

По роду рабочего тела различают корпусы паровых турбин, газовых турбин, компрессоров. По конструкции — корпусы неразъемные, с горизонтальным и с вертикальными разъемами. По изготовлению — литые, сварно-литые, сварные из штампованных элементов.  [c.31]

Перлитные стали являются наиболее распространенными в сварных конструкциях паровых и газовых турбин. Объем конструкций, изготавливаемых из них, в несколько раз превосходит объем сварных изделий, изготавливаемых из сталей других классов.  [c.25]


За последние годы большие успехи достигнуты в области исследования рациональных циклов и типов газовых турбин и газотурбинных установок. Ввиду трудностей использования твердых топлив, отсутствия достаточно проверенных на практике конструкций газовых турбин, газовых и воздушных компрессоров и необходимых теплообменных аппаратов, обеспечивающих создание рациональных типов газотурбинных электростанций, газовые турбины большой мощности в ближайший период времени не смогут еще получить очень широкого применения на электрических станциях.  [c.18]

В современных паровых и газовых турбинах сварные конструкции весьма широко распространены. Вес сварных конструкций к общему весу паровой турбины К-50 ЛМЗ составляет 49%, у турбины К-200-130 он равен около 60% (рис. I. 32). Применение сварных конструкций в значительной степени снижает общий вес турбины.  [c.72]

К таким узлам и деталям относятся заготовки для рабочих и направляющих лопаток паровых и газовых турбин, сварные конструкции паровых турбин, сварные части корпусов газовых турбин и др.  [c.77]

За последние годы для нужд автомобильного, железнодорожного и водного транспорта создано свыше 200 типов газовых турбин. Большинство конструкций работает по разомкнутой схеме существуют также установки, работающие по замкнутой схеме.  [c.157]

Инженер П. Д. Кузьминский предложил газовую турбину радиальной конструкции, состоящую из двух смежных дисков, на боковой поверхности которых концентрически были размещены направ-  [c.396]

Методы образования производных машин и их рядов на основе унификации не являются универсальными и всеобъемлющими. Каждый из них приложим к ограниченной категории машин. Многие машины (паровые и газовые турбины) по конструкции не допускают образования производных машин. Невозможно или нецелесообразно образовывать производные ряды для специализированных машин, машин большой мощности и т. д., которые остаются в категории индивидуального проектирования.  [c.50]

Применять раствор жидкой консистенции нельзя, так как цемент, как более тяжелая составляющая, будет опускаться и тем самым будут создаваться в изоляции пустоты и неплотности. После заполнения всего пространства изоляция просушивается при 20—25° С в течение 3—5 суток. Наиболее эффективной для внутренней изоляции газовой турбины является конструкция из каолиновой ваты. т.  [c.342]

Барабанные роторы газовых турбин по конструкции аналогичны роторам паровых турбин. Они бывают цельноковаными и сварными. В турбинах небольшой мощности ротор часто отковывается заодно с валом (рис. 13.6, а, б). Применяются также сварные роторы (рис. 13.6, в, г), которые в ряде случаев бывает целесообразно выполнять из элементов, изготовленных из разных сталей.  [c.401]


На газовых турбинах последней конструкции в систему регулирования включен дополнительно регулятор температуры. Если во время работы турбины температура после камеры сгорания достигнет предельного значения и будет стремиться к увеличению, то регулятор температуры откроет слив проточного масла, регулирующий клапан прикроется и возрастание температуры прекратится. На турбинах без регуляторов давления и температуры обслуживающий персонал должен удерживать эти параметры в допустимых пределах с помощью задатчика регулятора скорости.  [c.16]

Равномерный, без короблений и разрывов, прогрев всех элементов конструкции парового котла, особенно кирпичной обмуровки, если она есть, и сильно удлиняющихся при нагреве экранных труб, связанных между собой жесткими трубами большого диаметра — коллекторами, также невозможно осуществить быстро. Тонкостенная камера сгорания газовой турбины, работающая при низком давлении, прогревается намного быстрее котла.  [c.218]

В конструкцию ГТ-125-950-ПГ необходимо внести изменения, учитывающие условия ее работы в схеме ПГУ повысить расход газа через газовую турбину по сравнению с серийной (за счет увеличения расхода топлива на ПГУ по сравнению с ГТУ) и установить два боковых радиальных патрубка в турбокомпрессорном блоке для вывода воздуха после компрессора и ввода продуктов сгорания из ВПГ в газовую турбину.  [c.23]

В различных областях техники широко применяются такие детали и элементы конструкций, которые с точки зрения расчета их на прочность и жесткость могут быть отнесены к тонким оболочкам. Это цистерны, водонапорные резервуары, воздушные и газовые баллоны, купола зданий, герметические перегородки в самолетах и подводных лодках, аппараты химического машиностроения, части корпусов турбин и реактивных двигателей и т. д.  [c.467]

Увеличение излучательной способности может быть достигнуто с помощью нанесения покрытий на сплавы и металлы, которые применяются в конструкциях газовых турбин. С этой целью Де Кор-со [64] провел исследова-  [c.208]

В учебном пособии рассмотрены первый и второй законы термодинамики, процессы изменения состояния газов и паров, термодинамические основы работы компрессоров, циклы тепловых установок. Изложены основы теории и рассмотрены конструкции паровых и газовых турбин, двигателей внутреннего сгорания, а также компрессоров.  [c.672]

Однако в ряде практических расчетов задача оказывается сложнее. Дело в том, что скорость перед затвором не всегда можно определить независимо от напора или произвольно задать, так как в некоторых случаях она зависит от давления (напора) перед затвором. Например, если за затвором имеет место свободное истечение в газовое пространство, то скорость v будет пропорциональна -/U, и, кроме того, будет зависеть от закона маневрирования затвором. Если за затвором расположена машина (например, гидравлическая турбина, насос), то скорость будет зависеть также от ее характеристик (частоты вращения, конструкции и др.). Поэтому дальнейший анализ и вывод расчетных зависимостей возможен лишь применительно к конкретному закону истечения через затвор.  [c.205]

Их конструкции рассматриваются в курсе Паровые и газовые турбины .  [c.275]

Эффективным направлением является использование в различных частях сварных конструкций разнородных материалов, наиболее полно отвечающих требованиям эксплуатации, применение двухслойного проката со специальными свойствами облицовочного слоя и других сочетаний. Примером может служить ротор газовой турбины. По ободу диск ротора подвергается действию высоких температур и относительно небольших усилий, а центральная часть работает в условиях невысоких температур и воздействия больших усилий Подобрать материал, одинаково хорошо работающий в этих условиях, очень трудно. Поэтому целесообразно изготовить сварной ротор центральную часть из высокопрочной стали перлитного класса, а обод диска из жаропрочной аустенитной (рис. 6.21).  [c.171]


А. В, Арсеньев и др. Паровые и газовые турбины. Атлас конструкций турбин, под ред. С. А. Кантора. ИзДгВо Машиностроение , 1970.  [c.385]

Классификация и конструкция. По конструкции муфты разделяют на жесткие, полужесткие (шлицевые), эластичные по назначению— на муфты паровых турбин, газовых турбин и компрессоров.  [c.48]

Предельная полезная мощность газовых турбин (однопоточная конструкция с реактивным облопачиванием) не превышает значений порядка 6 мгвт (при 3000 oб/ .ин.).  [c.400]

Трещины прн термической обработке возникают также в сварных соединениях теплоустойчивых сталей, в первую очередь легированных ванадием, молибденом и хромом. Одна из подобных зародышевых трещин на наружной поверхности у усиления шва (рис. 57) явилась, как указывалось выше, очагом эксплуатационного разрушения стыка паропровода стали 15Х1М1Ф после 60 тыс. ч эксплуатации при температуре 535—565 С (рис. 57, а). Примеры их появления в турбинных сварных конструкциях изложены в [93], Термическая обработка может приводить к трещинам и в изделиях из аустенитных нержавеющих и жаропрочных сталей, как правило, легированных ниобием или титаном. Наиболее вероятно их возникновение в изделиях большой толщины и сложной конфигурации, особенно при сочетании разиостенных элементов. С повышением жаропрочности сталей и прежде всего с повышением в них содержания ниобия и титана возможность появления указанных трещин возрастает, а сами трещины могут быть настолько большими, что приводят к браку изделия. На рис. 58 показан эскиз ротора газовой турбины, состоящего из двух сваренных между собой дисков из стали X15Н35ВЗТ диаметром 500 мм и привариваемого к ним стакана диаметром 400 мм при калибре швов 30 мм. Ротор после сварки был стабилизирован по режиму 700° С — 15 ч, что привело к появлению в районе околошовной зоны одного из дисков, а также у концентратора в месте перехода от горизонтального к вертикальному участку, большого числа  [c.95]

Для комплексной оценки конструкции представляет интерес сравнение различных типов поршневых двигателей внутреннего сгорания с газовыми турбинами. Газовые турбины автомобильного типа, отличаясь сравнительно небольшими габаритными размерами и малым весом, характеризуются высоким удельным расходом топлива, что делает их применение крайне спорным, несмотря на то, что, например, удельный вес газовой турбины автомобильного типа находится в пределах 0,52—1,02 кг1л. с., а соответствующего поршневого двигателя — соответственно 3,5—4,5 кг/л. с. Сравнительный анализ весов следует применять не только к конструкции машин, но и к их отдельным механизмам, которые в конечном итоге и предопределяют их вес например, НАТИ совместно с тракторными заводами были проведены работы по снижению веса и повышению срока службы зубчатых передач и шлицевых соединений тракторных трансмиссий, которые составляют значительную часть веса тракторов различных марок. Проведенные в этой области работы способствовали значительному повышению нагрузочной способности зубчатых передач и, как следствие, уменьшению габаритных размеров и веса тракторных трансмиссий.  [c.9]

ПРИМЕРЫ СУЩЕСТВУЮЩИХ КОНСТРУКЦИЙ МАЛЫХ ГАЗОВЫХ ТУРБИН Газовая турбина Вое1п  [c.947]

Д. Д. Пример установки Д. Д. с наддувом по системе Бюхи показан на фиг. 32. Двигатель— компрессорный, 4-тактный, простого действия, 6-цилиндровый. Выхлопные трубы в от отдельных цилиндров соединены в 2 группы выхлопными коллекторами /, по к-рым газы подводятся к турбине д. Воздуходувка сидит на одном валу с турбиной. Сжатый воздух поступает по трубопроводу а, через воздушный коллектор с и всасывающие клапаны й в цилиндры двигателя. При испытаниях двигатель допускал при давлении наддува 0,48 а1(1) возмоншость нагрузки до значений среднего эффективного давления = 9,4 а1, а среднее индикаторное давление = 11,2 at против обычного предела p = Ъ,О а1 в двигателе данного типа, но без наддува. Расход топлива для указанной предельной нагрузки составлял 184 г/Н е -час. Подробнее о наддуве Д. Д. и описание конструкций нагнетателей и турбин см. Нагнетатели авиационных двигателейи Турбины газовые. Высокая ценность дизельных топлив и ограниченность их ресурсов обусловили изыскание возможностей применения в Д. Д. утяжеленных дизельных топлив, получающихся после отгонки из нефти легких фракций, служащих в качестве топлива для карбюраторных двигателей. Применение тяжелых топлив (см. Дизельное топливо) вызывает необходимость устройств для подогрева топлива и более тщательной очистки, т. к. обычный отстой примесей для вязких продуктов является недостаточным. Подогрев топлива осуществляется либо отходящей из двигателя водой либо паром от котла-утилизатора. Наиболее соверщенным методом очистки топлива, обязательным при работе на утяжеленном тошпиве бескомпрессорных Д. Д., является центрифугирование при помощи центробежных сепараторов. При применении тяжелого топлива обычно имеет местО нек-рое повышение удельных расходов топлива, а также увеличение износа цилиндровых втулок двигателя за счет повышения нагаро-образований в цилиндре, загорания поршневых колец и т. в.  [c.194]

Лабиринтовые уплотнения и подшипники газовых турбин по конструкции в принципе такие же, как и у паровых турбин (см. гл. 4). В лабиринтовых периферийных и диафрагменных уплотнениях газовых турбин и компрессоров применяются так называемые сотовые вставки, которые легко истираются при задеваниях, и этим предотвращаются серьезные последствия, возникающие при задеваниях в традиционных жестких лабиринтовых уплотнениях.  [c.403]

Изложены o iioBEii технической термодинамики и теории тепло-и массообмена. Приведены основные сведения по процессам горения, конструкциям топок и котельных агрегатов. Рассмотрены принципы работы тепловых двигателей, паровых и газовых турбин, двигателей внутреннего сгорания и компрессоров. Описаны компоновки и технологическое оборудование тепловых электрических станций, а также оборудование промышленных теплоэнергетических установок. Первое издание вышло в 1982 г. Второе издание дополнено материалами для самостоятельной работы студентов.  [c.2]


Принцип работы га.1овой и паровой турбин одинаков, но конструкция проточной части газовых турбин значитель-  [c.174]

В результате массового перевода доменных печей на работу с повышенным давлением газа мод колошником появилась возможность использования потенциальной энергии доменного газа. Доменный газ, имеющий давление 0,25 -0,3 МПа, расширяется в специальной газовой турбине до давления около 0,11 МПа, еще достаточного для транс портировки его потребителю. Мощность развиваемая такой турбиной, зависит от количества доменного газа, его началь ного давления и температуры. Например выход доменного газа из домны объемом 1400 м достигает 250 000 м /ч мощ ность, развиваемая турбиной при давле НИИ газа 0,25 МПа и температуре 500 С составит около 12 000 кВт. Конструкция турбины мало отличается от описанных выше.  [c.176]

Это явление имеет особенно большое значение в конструкции тепловых машин (например, газовых турбин) с корпусами большого диаметра, зачастую вьшолняемыми из разлшшых материалов.  [c.384]

Этот метод интенсификации позволяет с помощью однофазного теплоносителя охлаждать сплошную стенку, подверженную воздействию больших тепловых потоков, например при конвективном охлаждении стенок ракетных двигателей (рис. 1.8) и лопаток их газовых турбин, элементов электронной аппаратуры и других теплонапряженных устройств. В частности, за счет охлаждения прокачкой воды через проницаемую подложку может быть обеспечена надежная рабрта лазерного отражателя. Такой способ охлаждения в настоящее время - единственный при малых размерах или сложной форме нагреваемых конструкций, в которых невозможно выполнить каналы для охладителя. Например, лопатки малых газовых турбин ракетньи двигателей с максимальной толщиной профиля порядка 3 мм, хордой около 2 см и длиной от 1 до 2 см обычно не охлаждаются, что ограничивает температуру газового потока и эффективность таких турбин. Изготовление лопаток из волокнистого металла 1 (рис. 1.9), покрытого снаружи тонким герметичным слоем керамики 2 и охлаждаемого продольным потоком газа, вытекающего через вершину, позволяет снять эти ограничения.  [c.12]

Повышение эффективности энергетических агрегатов, как правило, связано с изменением конструкции. Так, например, в котельной установке производительностью 950 т/ч ири сохранении старой конструкции потери тепла в окружающую среду составляют 0,1% к. п. д., П рисос воздуха в газовый тракт котла снижает его к. п. д. еще на 0,5 7о, за счет чего теряется около 80 000 руб. в год [178]. Эти потери могут быть значительно компенсированы увеличением доли энергии излучения в общем тепловом балансе. Повышение излучательной способности узлов находит широкое применение в установках для прямого преобразования тепловой энергии в электрическую, в котлах, турбинах, двигателях, высокотемпературных печах и в теплообменниках, электровакуумных  [c.5]

Работа машинного агрегата сопровождается динамическими воздействиями его.на окружающую среду. Гфи относительном движении звеньев усилия в кинематических парах изменяются, что приводит к переменному нагружению стойки механизма. Вследствие этого фундамент, на которо.м установлен машинный агрегат, испытывает пиклически изменяют,иеся по величине и направлению силы. Эти силы через фундамент передаются на несущие конструкции здания, соседние машинные агрегаты и приборы и приводят к колебаниям и вибрациям. Неравномерность движения звеньев механизмов приводит к возникновению дополнительных сил инерции. Эти силы увеличивают колебания и вибрации звеньев механизма и машины в целом и сказываются на точности их работы. Если амплитуда колебаний достаточно велика (например, при работе в зоне резонанса), то в деталях звеньев возникают напряжения, превышающие допускаемые, что приводит к их разрушению. Вибрации — это причина выхода из строя деталей самолетов и вертолетов, элементов газовых и паровых турбин, неточностей в работе станков, роботов и т. п.  [c.351]

Термический к. п. д. т1 повышают путем увеличения степени сжатия е. Для увеличения е приходится усложнять конструкцию ПВРД, например, путем установки компрессора (с приводом от газовой турбины) после диффузора.  [c.140]

Конструкция первой газовой турбины была разработана инжене-ром-механиком русского флота П. Д. Кузьминским. Построенная им в 1897 г. турбина предназначалась для небольшого катера. В камеру сгорания турбины, работавшую под давлением 10 бар, подавалось жидкое топливо — керосин и смесь воздуха с паром Продукты сгорания в смеси с паром подводились к центральной части радиальной турбины, состоявшей из неподвижного и вращающегося дисков, на которых были укреплены лопатки. Газовая турбина со сгоранием топлива при постоянном объеме была построена В. В. Караводиным в 1906 г.  [c.390]

Принцип работы газовой и паровой турбин одинаков, но конструкция проточной части газовых турбин значительно проще. Они работают на относительно небольшом распо-./тагаемом теплоперепаде и поэтому имеют небольшое число ступеней.  [c.198]

Влияние повышенных температур. В современных условиях работа конструкций часто бывает сопряжена с высокими температурами. Элементы конструкций сверхзвуковых самолетов па1реваются н полете до 200°С и выше, детали газовых турбин авиациоипых двигателей работают при температуре ООО—1000 С. С действием высоких температур приходится считаться в энергетическом и химическом машиностроении и т. д.  [c.87]


Смотреть страницы где упоминается термин Турбин газовых конструкции : [c.64]    [c.6]    [c.487]    [c.351]    [c.305]    [c.20]    [c.221]    [c.237]    [c.418]   
Турбины тепловых и атомных электрических станций Издание 2 (2001) -- [ c.398 , c.403 ]



ПОИСК



Газовая турбина конструкция

Газовая турбина конструкция

Конструкции газовых турбин и их основные параметры

Конструкции корпусов осевых компрессоров и газовых турбин

Конструкции основных деталей газовых турбин

Конструкции стационарных газовых турбин постоянного давления

Конструкция газовой турбины и суперсплавы. Г.ЕМиллер, Чемберс

ОБЩИЕ ВОПРОСЫ ПРОЕКТИРОВАНИЯ И ИЗГОТОВЛЕНИЯ СВАРНЫХ КОНСТРУКЦИЙ ПАРОВЫХ И ГАЗОВЫХ ТУРБИН Принцип действия паровых и газовых турбин, условия их работы и конструкция

Примеры существующих конструкций малых газовых турбин

Проточная часть и элементы конструкции газовой турбины

Турбина газовая

Турбины Газовые турбины

Турбины газовые



© 2025 Mash-xxl.info Реклама на сайте