Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проточная часть и элементы конструкции газовой турбины

ПРОТОЧНАЯ ЧАСТЬ И ЭЛЕМЕНТЫ КОНСТРУКЦИИ ГАЗОВОЙ ТУРБИНЫ  [c.95]

Ротор газовой турбины — основной элемент ее проточной части. Его конструкция определяется конструктивной схемой ГТУ (см. рис. 4.3). Он состоит из вала, опирающегося на подшипники скольжения или качения, дисков, насажанных на вал и стянутых сквозными болтовыми соединениями (12—16 шт.), и лопаток, укрепленных в дисках. Частота вращения ротора совпадает с частотой энергосистемы, если он через муфту непосредственно присоединен к электрогенератору. Она может быть значительно выше при наличии редуктора или при использовании более сложной конструктивной схемы ГТУ. Ротор газовой турбины может быть сконструирован по одной из схем (рис. 4.17). Преимуществом обладает ротор, в котором на основной вал  [c.97]


Характерные конструктивно компоновочные схемы газовых турбин показаны на рис. 4.5. На конструктивную компоновку газовой турбины основное влияние оказывает число ступеней и число роторов турбины, место расположения опор роторов и принимаемые конструктивные схемы силовой связи опор с наружным корпусом, наличие и число разъемов у ротора и потребное количество разъемов у корпуса, геометрия проточной части, схема охлаждения элементов конструкции (сопловых и рабочих лопаток, дисков, корпусных деталей, опор и др.), удобство сборки и разборки, а также контроля технического состояния и ряд других факторов.  [c.135]

Особенностью режимов нагружения деталей авиационных ГТД является высокая температура основных деталей — рабочих и сопловых лопаток турбины, дисков, элементов проточной части газового тракта. По данным зарубежных исследователей [7, 8 и др.], температура газа перед турбиной в транспортных ГТД за последние 10—15 лет выросла на 300° С и достигает 1300° С и более, что вызвано требованиями снижения удельного веса двигателей и повышения их мощности и экономичности. Эти требования в наибольшей степени относятся к авиационным двигателям, в особенности из-за общей тенденции экономии топлива. По данным работы [7], в которой приведен обзор направлений развития зарубежных ГТД, рост температуры газа перед турбиной будет продолжаться, к 1985—1990 гг. может быть достигнут уровень 1700° С. Охлаждаемые конструкции лопаток допускают эту возможность, если учесть, что жаропрочность обычных литых материалов увеличивается в среднем на 10° в год кроме того, разрабатываются новые высокожапропрочные сплавы — композиционные, эвтектические и др. [9]. Следовательно, теплонапря-женность деталей авиационных двигателей будет увеличиваться. Высокий уровень температур объясняет и следующую особенность этих конструкций — применение высокожаропрочных сплавов, которые часто не имеют большого ресурса пластичности, свойственного ряду конструкционных материалов, используемых в тех же деталях 10—15 лет назад. В табл. 4.1 приведены для сравнения некоторые характеристики жаропрочных лопаточных сплавов, расположенных в хронологическом порядке их применения в промышленности. Каждый из четырех приведенных материалов является базовым для ряда других, созданных на его основе, и представляет, таким образом, группу сплавов.  [c.77]

Многие области техники используют достижения механики жидкости к газа. Авиация и кораблестроение, основными проблемами которых являются скорость, устойчивость и управляемость самолета, ходкость, устойчивость и управляемость судна, неразрывно связаны с аэродинамикой и гидродинамикой. Такая смежная с авиацией отрасль техники, как реактивная техника, не только использовала достижения предыдущей эпохи, но и поставила, главным образом, перед газовой динамикой, ряд новых задач, послуживших дальнейшему значительному развитию этой сравнительно молодой отрасли механики жидкости и газа. Так, например, конкретная задача о возвращении космического корабля или баллистической ракеты на землю через плотные слои атмосферы вызвала к жизни многочисленные исследования по борьбе с разогревом поверхности твердого тела за счет тепла, возникающего при диссипации механичес ой энергии потока вблизи поверхности тела (в пограничном слое), с плавлением или сублимацией (непосредственным испарением твердой поверхности без прохождения процесса предварительного оплавления) поверхности корпуса ракеты. Совокупность этих и многих других близких задач привела к образованию нового раздела механики жидкости и газа — аэротермодинамики. Отметим еще важное значение гидроаэродинамики и газодинамики в турбостроении и двигателестрое-НИИ, особенно в создании реактивных и ракетных двигателей. Проточные части гидротурбины, паровой и газовой турбин, реактивного двигателя, компрессора или насоса представляют собой сложные конструкции, состоящие из ряда неподвижных (направляющие аппараты) и подвижных (рабочие колеса) лопастных систем. При вращении рабочих колес составляющие их лопатки обтекаются с большими относительными скоростями водой, газом или паром. От правильного гидродинамического расчета формы профилей и конструкции лопаток рабочих колес зависит достижение требуемой мощности машины, ее высокого коэффициента полезного действия. Надо также уметь рассчитывать и лопастные направляющие аппараты водяной, воздушной или газовой 1урбины, улучшать и другие элементы проточной асти, от гидроаэродинамического совершенства которых зависит качество турбины в целом.  [c.16]



Смотреть главы в:

Газотурбинные и парогазовые установки тепловых электростанций  -> Проточная часть и элементы конструкции газовой турбины



ПОИСК



Газовая турбина конструкция

Турбин газовых конструкции

Турбина газовая

Турбины Газовые турбины

Турбины газовые

Части турбины проточные

Элемент конструкции



© 2025 Mash-xxl.info Реклама на сайте