Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамический потенциал поверхность

Уравнения (15.4), (15.5) определяют и равновесную форму граничной поверхности между фазами, т. е. форму поверхности, при которой реализуется минимум соответствующего термодинамического потенциала системы. Действительно, если мембрана гибкая и на нее действуют только силы, учтенные в (15.3), то разность давлений на мембране должна быть одинаковой в любой точке ее поверхности, так как в каждой из фаз давления изотропны (гидростатические давления), т. е.  [c.138]


Такое разнообразие выражений для элементарных работ вызвано принятыми в физике способами описания электрических и магнитных явлений, а не термодинамическими особенностями этих систем. Действительно, соотношение (19.7) показывает, что функцию и можно рассматривать не как внутреннюю энергию, а как термодинамический потенциал Ль являющийся преобразованием Лежандра функции V. Формальный смысл введения этой функции—замена переменной на сопряженную ей интенсивную переменную 6. Соотношение между V" ц. и ъ поляризованной системе подобно соотношению между Я и (У в рассмотренных выше механических системах. Так, если давление в цилиндре создается весом поршня mg, то потенциальная энергия поршня mgh = Pa)h = PV, где h — высота цилиндра, со — площадь поверхности поршня. Можно ограничить рассматриваемую систему телом, находящимся, внутри цилиндра, внутренняя энергия такой системы равна U. Но можно включить в систему и поршень, тогда внутренняя энергия равняется U + PV=H. Физический смысл слагаемых типа VdP, входящих в фундаментальное уравнение функции, Н Т, Р, п)  [c.161]

Работа образования зародыша состоит из работы образования поверхности — S , поверхностной эпергией а и изменения термодинамического потенциала.  [c.260]

Приращение термодинамического потенциала системы вследствие появления новой зародышевой фазы объемом и полной поверхностью на поверхности твердого тела описывается уравнением [18]  [c.260]

Если рж( Ип—-м,ж) П(бо), термодинамический потенциал Ф(б) монотонно убывает с ростом толщины пленки. При этом на поверхности пленки происходит конденсация пара.  [c.17]

В. Томсоном [Л. 237] было сделано предположение о равномерном распределении заряда е на поверхности жидких капель. При этом условии поверхностная энергия капли 2яг а возрастает на величину е /2г п термодинамический потенциал системы оказывается равным  [c.37]

Процесс конденсации пересыщенного пара на плоской поверхности происходит следующим образом. Поверхность стенок сосуда покрывается жидкой пленкой различной толщины, которая непрерывно меняется во времени, пока не достигнет в каком-либо месте критического значения Акр, после чего дальнейшее увеличение ее будет происходить монотонно и притом в ускоренном темпе. Скорость конденсации будет пропорциональна минимальному значению показательного множителя, соответствующего максимальному значению приращения термодинамического потенциала  [c.39]


Прямые наблюдения за процессом образования аустенита методом вакуумной металлографии наглядно демонстрирует роль искажений в зарождении 7-фазы. При малых перегревах выше A i вокруг искусственно нанесенной на поверхность шлифа царапины происходит интенсивное образование аустенита, в то время как в остальных местах этот процесс практически еще не начинается (рис. 5). Преимущественное образование 7-фазы наблюдается и около отпечатка шарика после замера твердости. Описанное явление можно объяснить тем, что в деформированных участках исходной структуры содержится большое количество дефектов кристаллического строения, повышающих, в соответствии с выражениями (2), (3), термодинамический потенциал а-фазы. Естественно, что при нагреве аустенит в первую очередь будет образовываться именно в этих местах, так как они наименее устойчивы с термодинамической точки зрения.  [c.31]

При броуновском движении коллоидных частиц в жидкости, вызываемом тепловым движением молекул дисперсной фазы, на поверхности скольжения возникает потенциал, называемый (дзета)-по-тенциалом, отличный от термодинамического потенциала поверхностью частиц и жидкостью) и от потенциала концентрации раствора электролита (сз > С2> с , рис 7.28), заряда ионов и температуры.  [c.311]

Приведенные в табл. II. 1 данные убедительно показывают, что увеличение гидростатического давления приводит к замедлению процесса диффузии, уменьшению проницаемости и сорбции воды в полимерных материалах, несмотря на то, что повышение давления увеличивает термодинамический потенциал воды на поверхности образца.  [c.79]

Появление центров изменяет термодинамический потенциал системы Дб общ (рис. 3.3). С одной стороны, при переходе жидкости в кристаллическое состояние термодинамический потенциал уменьшается на V Gv G ), с другой — он увеличивается вследствие появления поверхности раздела между жидкостью и кристаллическим зародышем на величину, равную 5 r(G2)  [c.70]

Доказано также, что повышение гидростатического давления в трубопроводах и сосудах из полимеров приводит к замедлению процесса диффузии и уменьшению проницаемости и сорбции, несмотря на то, что при этом увеличивается термодинамический потенциал воды на поверхности полимера.  [c.103]

Движение границ в сторону обобщенной координаты Ад вызывается силами различного происхождения F и всегда должно сопровождаться изменением термодинамического потенциала системы АФ. Если АФ отнести к единице площади поверхности, то на единицу площади границы будет действовать  [c.180]

Избыточная энергия, которой обладают частицы, находящиеся на поверхности твердого тела (гл. I), обусловливает взаимодействие ее с частицами окружающей среды. Последние захватываются поверхностью твердого тела, что снижает термодинамический потенциал системы и является энергетически выгодным. Этот процесс протекает самопроизвольно и всегда с положительным тепловым эффектом. Захват поверхностью раздела посторонних ей частиц называется адсорбцией, твердое тело — адсорбентом, а адсорбируемое вещество — адсорбатом.  [c.57]

На ДВОЙНОЙ слой оказывает воздействие специфическая адсорбция анионов положительно заряженным электродом. Адсорбционные явления на поверхности электродов не оказывают влияния на общий потенциал между рассматриваемым металлом и раствором, определяемый термодинамическими факторами. Строение двойного слоя меняется и при прохождении через электрод электрического тока из-за неизбежного смещения при этом в ту или другую сторону потенциала поверхности электрода. Например, смещение потенциала положительно заряженного металла в отрицательную сторону (при подсоединении его к отрицательному полюсу источника тока) приводит к снижению количества анионов в двойном слое вплоть до их исчезновения (когда избыточная концентрация анионов в нем станет равной нулю).  [c.15]

Раздел 3 — Неравновесные состояния условия равновесия и их применение (возрастание энтропии при необратимом адиабатическом переходе из одного равновесного состояния в другое определение энтропии неравновесных состояний определение свободной энергии для равновесного состояния изменение энтропии при необратимых процессах изменение свободной энергии при необратимых процессах условия равновесия системы замечания, связанные с уточнением физического смысла законов термодинамики фаза условие устойчивости системы, состоящей из одной фазы фазовые превращения фазовые превращения первого рода уравнение Клапейрона — Клаузиуса равновесие трех фаз поверхность термодинамического потенциала критическая точка поверхностная энергия и поверхностное натяжение роль поверхностного натяжения при образовании  [c.364]


В процессе спекания постоянно уменьшается общая поверхность зерен и увеличивается поверхность их соприкосновения. Однако сокращение общей поверхности приводит к уменьшению поверхностной и общей свободной энергии системы. Иными словами, движущей силой процесса спекания дисперсных порошков является снижение термодинамического потенциала системы. При этом чем больше их начальная поверхностная энергия, тем значительнее движущая сила процесса спекания.  [c.85]

Если фаза D находится в устойчивом равновесии, то все вертикальные сечения поверхности в точке D должны быть обращены в этой точке своей выпуклой стороной вниз. Если хотя бы одно вертикальное сечение дает кривую, обращенную вниз своей вогнутой стороной, то фаза D неустойчива. В самом деле, фаза D может тогда распасться на две фазы с уменьшением термодинамического потенциала точки горизонтальной плоскости, изображающие эти две фазы, будут лежать на некоторой прямой, проходящей через проекцию точки D на горизонтальную плоскость.  [c.102]

Исследуем условия равновесия между двумя жидкими фазами Н и К. Рассмотрим прежде всего сечение (-поверхности вертикальной плоскостью, проходящей через (-точки Н и К, и докажем, что если Н и К находятся в равновесии друг с другом, то прямая НК служит касательной к (-поверхности как в точке Н, так и в точке К. Пусть, далее. Ник (рис. 20) — проекции на горизонтальную плоскость точек Н и К, I и Ь — точки, изображающие некоторый комплекс [Н, К), так что расстояние 1Ь определяет термодинамический потенциал этого комплекса. к и к — точки некоторой прямой, проходящей через I, и, вдобавок, бесконечно близкие к точкам Ник. Точки Н и к служат проекциями на горизонтальную плоскость точек (-поверхности Н и К.  [c.104]

Рассматривая (-поверхности, мы ограничивались до сих пор лишь общими соображениями об их форме. Теперь мы разберем эти вопросы несколько подробнее с помощью теории смесей, разработанной ван-дер-Ваальсом. Вместо термодинамического потенциала используем свободную энергию.  [c.109]

Рис. 125. Поверхность термодинамического потенциала G(e,H) сверхпроводника Рис. 125. Поверхность термодинамического потенциала G(e,H) сверхпроводника
ПОВЕРХНОСТЬ ТЕРМОДИНАМИЧЕСКОГО ПОТЕНЦИАЛА  [c.121]

Поверхность термодинамического потенциала  [c.121]

Возникновение парового зародыша как в объеме насыщенной жидкости, так и на элементе поверхности твердой фазы имеет флуктуацион-ный характер. Вероятность флуктуационного возникновения зародыша пропорциональна ехр(- LjkT), где Z, - работа, затрачиваемая на образование пузырька. На поверхности раздела жидкость—твердая фаза молекулярное сцепление ослаблено и работа, затрачиваемая на образование пузырьков, равная изменению термодинамического потенциала системы ДФ при его появлении, меньше, чем в объеме жидкости, и может быть рассчитана по выражению  [c.83]

Теплота переохлаждения конденсата 43 Термический коэффициент объемного расширения 23 Термодинамическая теория капиллярности 6 Термодинамический потенциал двухфазной системы 16 Термокапиллярная сила 146 Тол1цина поверхности разрыва 6  [c.236]

В основе Г. п. ф. лежит предположение, что каждой фазе соответствует свой термодинамический потенциал (напр., энергия Гиббса) как ф-ция независимых термо-динамич. параметров. Фазу можно определить как однородную совокупность масс, термодинамич, свойства к-рых одинаково связаны с параметрами состояния, Г. п. ф. есть следствие условий термодинамич. равновесия многокомпонентных многофазных систем, т. к. число независимых термодинамич. переменных в равновесии не должно превышать числа ур-ний для них. Макс. число сосуществующих фаз достигается, когда число переменных равно числу ур-ний, определяющих термо-дииамич. равновесие. Г. п. ф. задаёт число независимых переменных, к-рые можно изменить, не нарушая равновесия, т. е. число термодинамич, степеней свободы системы /= +2—гЭгО. Число / наз. числом степеней свободы или вариантностью термодинамич. системы. При f=0 система наз. ин(нон)вариантной, при f=l — моно(уни)вариаптной, при /==2 — ди(би)ва-риантной, при — поливариантной. Г. п, ф, справедливо, если фазы однородны во всём объёме и имеют достаточно большие размеры, так что можно пренебречь поверхностными явлениями, и если каждый компонент может беспрепятственно проходить через поверхности раздела фаз, т. с. отсутствуют полупроницаемые перегородки. Цифра 2 в Г, п. ф. связана с существованием 2 переменных (темн-ры и давления), одинаковых для всех фаз. Если на систему действуют внеш. силы (напр., электрич. или маги, поле), то число степеней свободы возрастает па число независимых внеш. сил. При рассмотрении фазового равновесия в системах с дисперсной жидкой фазой необходимо учитывать силы поверхностного натяжения. В этом случае число степеней свободы возрастает па единицу и Г. п. ф. выражается соотношением л+3—гЭгО.  [c.451]

Для расчета скорости образования пленки критической толщины можно воспользоваться структурной формулой (2-25), выведенной для скорости образования ядер конденсации. Только теперь под скоростью образования мы будем понимать не число ядер, возникающих в единицу времени в единице объема, а скорость образования иленкп критической толщины. Приращение термодинамического потенциала системы в случае несмачиваемой поверхности определяется по структурной формуле (2-35). Для смачиваемой поверхности вопрос о скорости образования пленки не имеет смысла, так как пленка нулевой толщины уже является критической, и в этом случае представляет интерес только скорость роста ее.  [c.279]


Как видно из формулы (5.12), равновесие, т. е. миниму м термодинамического потенциала системы при постоянных объеме, температуре и химических потенциалах компонентов, соответствует экстрему 1у площади поверхности у4 минимуму при а>0 и максимуму при а <0.  [c.61]

Переход от неравноосных форм кристаллов избыточной фазы к равноосным (сфероидизация) часто осуществляется путем деления кристаллов на части. Это деление хорошо изучено на примере сфероидизации цементита железоуглеродистых сплавов. На первый взгляд деление кажется энергетически неоправданным, так как сопряжено с развитие.м межфазной поверхности. Однако, если учесть эффект существующих в матрице и избыточной фазе структурных дефектов (границ и субграниц, скоплений дислокаций), диспергирование крупных кристаллов можно термодинамически обосновать. Например, в месте встречи границы зерен матрицы а с гранью избыточной фазы р (рис. 11) плоская меж-фазная поверхность оказывается неустойчивой. В условиях равновесия изменение термодинамического потенциала системы должно быть равно нулю. Предположим, что в результате роста кристалла р вдоль межзеренной границы матрицы межфазная поверхность увеличилась на At/. Развитие межфазной поверхности сопряжено с сокращением межзе-  [c.44]

Однако при фазовом переходе в веществе, хорошо очищенном от всяких посторонних включений — частиц пьши, пузырьков газа в жидкости или капель жидкости в паре и т. д., новая фаза возникает в мелкодисперсном виде в форме мелких кристаллов, мелких капель жидкости, пузырьков пара. В таких мелких зародышах новой фазы значительная доля частиц находится в тонком поверхностном слое, и слагаемое аа в (27.3) начинает играть существенную роль. Поэтому рост достаточно малого зародыша новой фазы оказывается термодинамически невыгодным. Дело в том, что уменьшение объемной части термодинамического потенциала при переходе вещества из фазы с большим в фазу с меньшим химическим потенциалом с избытком компенсировалось бы ростом поверхностной энергии аа вследствие роста площади поверхности зародыша. Поэтому полный термодинамический потенциал при таком переходе возрастал бы. Следовательно, если зародыши новой фазы являются мелкими, исходная фаза находится в метастабильном состоянии за точкой фазового перехода. Действительно, хотя ее полное превращение в конечную фазу сопровождалось бы уменьшением термодинамического потенциала, начальная стадия этого превращения (рост мелких зародышей) требовала бы его увеличения.  [c.143]

В статье [83] определяется поверхность, огибающая однопараметрическое семейство плоскостей, касательных к двум поверхностям термодинамического потенциала одной трехкомпонентной системы, и устанавливается связь между полученной поверхностью и изотермическим сечением диаграммы состав — свойство . Ус-тано>влено, что поверхность, огибающая однопараметрическое семейство пло скостей, касательных к поверхностя-м термодинамического потенциала, есть торс.  [c.77]

Строгого объяснения это явление пока не получило. Если исходить из простого предположения об индифферентности электроположительной фазы сплава, которая не изменяет термодинамических свойств поверхности раздела электроотрицательная фаза — раствор электролита, то наблюдаемые сдвиги электродных потенциалов должны означать, что химический потенциал электроотрицательного компонента в собственной фазе выше химического потенциала в до-эвтектическом или эвтектическом сплавах [см. уравненле (1.13)]. Это, в свою очередь, означает возможность само-  [c.154]

Следует также отметить, что поверхность имеет свои специфические особенности не только на уровне атомарной, но и электронной подсистемы [385-391]. Последнее особенно ярко проявляется на полупроводниках и диэлектриках и выражается в наличии дебаевского радиуса экранирования, обусловленного энергетическими уровнями Тамма или Шокли [385-387], а также уровнями, связанными с примесями, дефектами и адсорбционными процессами на поверхности кристалла [388—391]. В полупроводниках с концентрацией носителей п = 10 см глубина дебаевского радиуса Lp — 10 см, при этом = (е kTjlne n) , где е — диэлектрическая постоянная кристалла, е — заряд электрона. М.А. Кривоглаз [427] показал, что изменение потенциала и концентрации дефектов (примесей, вэ, . кий и пр.) в приповерхностном слое толщиной порядка дебаевского радиуса оказывает весьма существенное влияние на некоторые термодинамические и кинетические свойства кристаллов и тонких пленок (изменение термодинамического потенциала, растворимость примесей, скорость диффузии, температурный сдвиг кривых фазового равновесия и др.).  [c.133]

Таким образом, из (7.5) - (7.9) следует, что химический потенциал вакансий должен уменьшаться с увеличением внешнего сжимающего давления, при этом общий термодинамический потенциал образования вакансий должен увеличиваться согласно (7.5), а концентрация вакансий соответственно уменьшаться по сравнению с равновесным значением при Р = О и р = 0. При этом максимальный эффект следует ожидать именно в приповерхностных слоях образца в области его торцов, где максимален коэффициент концентрации напряжений, который может быть порядка (Отах/ ср) 3—10 и более, а также в области ребер, где имеет место пересечение двух свободных поверхностей, т.е. свободная поверхность как облегченный источник и сток точечных дефектов здесь работает максимально. Еще большее изменение (повышение или понижение в зависимости от типа включения) локального химического потенциала G следует ожидать 206  [c.206]

Равновесная форма кристалла характеризуется минимальным значением суммы изобарного термодинамического потенциала объема V и поверхности (о. При F = onst равновесие определяется условием Гиббса, согласно которому минимальное значение должна иметь сумма — поверхность, а — энергия i-ой грани.  [c.31]

Для объяснения выявленной закономерности можно установить взаимосвязь наблюдаемого явления с условиями протекания химических реакций в рабочей камере установки. В случае малых скоростей и ламинарных потоков создаются неблагоприятные условия для протекания реакций образования субгалогенидов и взаимодействия их с насыщаемой поверхностью в связи с недостаточным подводом реагентов и удалением продуктов реакции. При больших скоростях потока газовой среды уменьшается время контакта между газообразными и твердыми реагентами, что в конечном итоге приводит к снижению интенсивности диффузионного насыщения. Такое объяснение кинетической особенности процесса согласуется с термодинамическими расчетами. Так, например, в случае алитирования никеля при малых и больших скоростях потока газовая смесь обогащается треххлористым алюминием и термодинамическая вероятность ведущих реакций процесса (1Г) и (32) несколько уменьшается вследствие роста нестандартного термодинамического потенциала, рассчитанного по уравнению изотермы химической реакции.  [c.57]

С повышением температуры превращения при высоких скоростях нагрева (при перенагреве) свободная энергия системы возрастает настолько, что число центров зарождения 7-фазы увеличивается за счет их образования в областях структуры о меньшей плотностью дислокаций. Свободная энергия, существующая вокруг этих зон, исчезая при превращении, передается зародышу новой фазы, понижая энергию его образования. Отмеченное подтверждается тем обстоятельством, что при быстром нагреве стали аустенит образуется в первую очередь вокруг деформированных участков а-фазы, термодинамический потенциал которых выше, чем у недеформированной а-фазы, из-за наличия большого количества дефектов кристаллического строения и низкой устойчивости с термодинамической точки зрения. В то же время при медленном нагреве (со скоростью до 1 °С/мин) в результате исчезновения искажений решетки в образцах с различной исходной структурой образуется примерно одинаковое количество аустенита, так как при этом участками зарождения 7-фазы становятся поверхности раздела фаз.  [c.74]


Д формация от тепловых напряжений. Изменение формы тела под влиянием тепловых напряжений происходит из-за взаимодействия слоев металла, имеющих различную температуру и разный удельный объем. Можно мысленно представить внутри охлаждаемого тела ряд изотермических поверхностей. Внешний слой, ограниченный внутри изотермической поверхностью, при понижении температуры стремится сжаться, но испыгырает противодавление пластической сердцевины. В результате происходит деформация, направление которой должно быть таким, чтобы состояние тела приближалось к наименьшему уровню термодинамического потенциала. Такое положение соответствует шарообразной форме.  [c.120]

Таким образом, область графического изооражения ограничена треугольником 0х020з. Какова будет форма (-поверхности — геометрического места (-точек (-точку каждой системы мы получим так же, как и в случае двух компонент. Именно, восставим перпендикуляр из соответствующей точки горизонтальной плоскости и отложим на нем значение термодинамического потенциала для данной системы. В дальнейшем точки горизонтальной плоскости будем обозначать строчными буквами, а (-точки — прописными буквами. Очевидно, что (-точка комплекса, состоящего из Ца, Ць А с молей систем А, В и С (причем XI А = 1) совпадает с центром тяжести трех масс la, Ць и Не помещенных, соответственно, в точках А, В и С. (-точки всех комплексов, составленных из двух систем А и В, расположены на отрезке АВ и (-точки всех вообще комплексов, составленных из систем А, В и С, лежат в плоскости AB . Наконец, (-точки двух систем с одним и тем же составом лежат на одной и той же вертикали и возможность превращения одной из этих систем в другую зависит только от того, какая из соответствующих (-точек расположена ниже.  [c.101]

Для построения (-поверхности лучше применить не способ предыдущего параграфа, когда точки, изображавшие компоненты в чистом виде, были удалены в бесконечность, а другой способ, более удобный. Возьмем раствор или твердую фазу, где солей Аи В вместе содержится одна весовая часть, скажем, 1—х частей Аи х частей В, а воды — у весовых частей. Состав каждой фазы определяется тогда соответствующими значениями х и у. х будет лежать в интервале между О и 1, у — между О и оо тогда для обеих чистых солей, соответственно, у = О, х=1 и у = О, ж = 0. (-поверхность ограничена, таким образом, двумя параллельными вертикальными плоскостями ж = 0иж = 1и третьей вертикальной плоскостью у = О, перпендикулярной двум первым, (-кривая смеси обеих расплавленных солей расположится в ж(-плоскос-ти, а (-кривые, изображающие термодинамический потенциал водного  [c.106]

Объем системы, связанный с поверхностью раздела фаз Е, имеет порядок Дс1С. Добавка к термодинамическому потенциалу, учитывающая наличие такой поверхности, равна (тЕ. Таким образом, удельная величина (в расчете на частицу системы) потенциала оказывается порядка (тЕ/(ДсЕ) = <т/Дс т +". Но так как удельная теплоемкость Су т — это вторая п х>изводная по температуре от термодинамического потенциала, то его сингулярная часть пропорциональна т , и мы поЛуЧаем  [c.359]


Смотреть страницы где упоминается термин Термодинамический потенциал поверхность : [c.83]    [c.42]    [c.61]    [c.7]    [c.228]    [c.399]    [c.39]    [c.63]    [c.266]   
Введение в термодинамику Статистическая физика (1983) -- [ c.121 ]



ПОИСК



Потенциал на поверхности

Потенциал термодинамический

Термодинамическая поверхность

Термодинамический потенциа



© 2025 Mash-xxl.info Реклама на сайте