Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Простые полупроводники

К простым полупроводникам относятся германий, кремний, селен, теллур, бор. углерод, фосфор, сера, сурьма, мышьяк, серое олово, иод.  [c.267]

Рис. 8.14. Зависимость удельного сопротивления простых полупроводников от концентрации примесей при 20 °С Рис. 8.14. Зависимость <a href="/info/43842">удельного сопротивления</a> простых полупроводников от концентрации примесей при 20 °С

Что служит сырьем для получения простых полупроводников Какие основные технологические операции имеют место при получении кремния полупроводниковой чистоты  [c.293]

Полупроводники бывают простые и-сложные. Полупроводник, основной состав которого образован атомами одного химического элемента, будет простым. Полупроводник, основной состав которого образован атомами двух или большего числа химически)б элементов, будет- сложным.  [c.568]

Простые полупроводники. К этим материалам относятся 12 элементов Bi, С (алмаз), Si, Ge, Sn, Р, As, Sb, S, Se, Те, I. Наибольшее распространение получили кремний и германий.  [c.379]

К полупроводниковым относятся материалы, обладающие удельным электросопротивлением в пределах 10 -10 Ом-м. К этим материалам относятся 12 элементов (табл. 18.3), представляющие простые полупроводники, а также многие химические соединения элементов различных групп Периодической таблицы химических элементов Д.И. Менделеева (табл. 18.4).  [c.585]

Из простых полупроводников наиболее распространены германий и кремний. Германий и кремний — элементы IV группы, имеют кристаллическую решетку алмаза с ковалентным типом межатомной связи. В  [c.585]

Использующиеся в практике полупроводниковые материалы могут быть подразделены на простые полупроводники (элементы), полупроводниковые химические соединения и полупроводниковые комплексы (например, керамические полупроводники). В настоящее время изучаются также стеклообразные и жидкие полупроводники.  [c.322]

Простых полупроводников существует около десяти, они приведены в табл. 8-2. Для современной техники особое значение получили германий, кремний и селен.  [c.322]

Для большинства полупроводниковых приборов используются примесные полупроводники. Поэтому в практике важное значение имеют такие полупроводниковые материалы, у которых ощутимая концентрация собственных носителей заряда появляется при возможно более высокой температуре, т. е. полупроводники с достаточно широкой запрещенной зоной. В рабочем интервале температур поставщиками свободных носителей заряда являются примеси. Примесями в простых полупроводниках служат чужеродные атомы.  [c.325]

Полупроводниковые соединения могут обладать самыми разнообразными электрофизическими свойствами, в ряде случаев превосходящими свойства простых полупроводников. Рассмотрим наиболее важные для электротехники материалы.  [c.350]

Простые полупроводники. К числу элементарных полупроводников относятся 12 простых веществ бор, углерод, кремний, фосфор, сера, селен, германий, мышьяк, серое олово, сурьма, теллур, йод. Обобщенной характеристикой химической связи в подгруппе является порядковый номер полупроводника в периодической системе Д. И. Менделеева. Простые полупроводники обладают ковалентной связью, которая образуется при взаимодействии двух электронов с противоположными спинами.  [c.230]


Очевидно, что конкретный механизм рассеяния электронов играет для термоэлектричества важную роль. Можно, например, предположить, что электроны, имеющие большую скорость, должны рассеиваться атомами решетки под меньшими углами, чем электроны с меньшей скоростью. Другими словами, средняя длина свободного пробега электронов будет зависеть от их кинетической энергии. Это верно в целом, но конкретная взаимосвязь длины пробега и энергии сложна и сильно зависит от электронной структуры решетки. Сложность связи между длиной пробега и энергией электронов не дает возможности получить количественное описание термоэлектричества, хотя качественно картина явления проста. Другими словами, наших сведений о поверхности Ферми реального металла недостаточно для вычисления термо-э.д.с. Следует отметить, что для полупроводников ситуация проще, поскольку число электронов и дырок, участвующих в процессе проводимости, значительно меньше. В этом случае модель электронного газа, в которой частицы подчиняются статистике Максвелла — Больцмана, лучше отражает истинную природу явления.  [c.268]

Когда система находится во внешнем поле, на каждую частицу действует отличная от нуля сила Р. Собственно говоря, одно внешнее поле такого типа присутствует всегда—это поле тяжести с Р =тд. И если мы о нем не вспоминаем, это значит просто, что разные части системы находятся примерно на одной высоте. Для ионов в электролитах и электронов в металлах или полупроводниках таким полем может быть электрическое поле с Р = еЕ, где е—заряд частицы, Е — напряженность поля.  [c.208]

Полупроводники оказались не просто плохими проводниками , а особым классом кристаллов со многими замечательными физическими свойствами, отличающими их как от металлов, так и от диэлектриков.  [c.154]

Вид энергетических зон при рассмотренных выше условиях показан на рис. 33. Энергия изображена как функция кх, однако эта зависимость сохраняется и для любого другого направления в кристалле. Если верхняя зона представляет собой зону проводимости, а нижняя <—валентную, то получается наиболее простая зонная структура полупроводника. На рисунке показана и ширина запрещенной зоны АЕ, которая отмечена как энергетический зазор между максимумом валентной зоны и минимумом зоны проводимости.  [c.88]

Даже для полупроводника, в котором гПп тпр, сочетание таких факторов, как высокая температура и малая ширина запрещенной зоны, означает, что уровень Ферми в области собственной проводимости отделен от каждой зоны (валентной и зоны проводимости) энергетическим интервалом, соизмеримым с коТ. Но это делает незаконной замену функции распределения Ферми—Дирака простой экспонентой, как это было выполнено при получении формул (3.35) и (3.37). Если к тому же (для примера) тр >тп, то уровень Ферми отдаляется от зоны с тяжелыми носителями заряда (т. е. в этой зоне вырождение отсутствует), но зато приближается к зоне с легкими носителями заряда или даже попадает внутрь зоны, что приводит к возникновению в ней сильного вырождения.  [c.115]

Рассматриваются основные электронные явления в полупроводниках и дается их простейшее  [c.350]

Простые злектронные полупроводники  [c.230]

Малогабаритные ультразвуковые установки УЗУ применяются для промывки, очистки или обезжиривания от полировальных паст, масел, смазок, металлической пыли и других загрязнений деталей или изделий радиотехнической, электротехнической, приборостроительной промышленности. Работают они на полупроводниках и имеют большой срок службы. Установки состоят из генератора и ванны, выполненных отдельными блоками. Колебания моющему раствору передаются при помощи пьезокерамических преобразователей из цирконата-титаната свинца (ЦТС-19), имеющего высокий к. п. д. (70—80% в отличие от 30— 40% у магнитострикционных преобразователей). Преобразователи из ЦТС-19 просты, экономичны и не требуют водяного охлаждения. Продолжительность очистки 30—50 сек.  [c.205]

Принцип действия механического полупроводника нетрудно понять, рассмотрев элементарную схему — несколько вплотную прижатых торцами друг к другу цилиндриков. Только между первым слева и остальными имеется небольшой зазор. Допустим, удар наносится левым крайним элементом, в то время как все остальные звенья находятся в покое. Поскольку все массы равны, энергия удара передается крайнему правому элементу полностью. (Вспомните биллиардные шары, стояш,ие впритык друг к другу. Если ударить по крайнему слева, то все шары остаются в покое, кроме крайнего справа, который отскакивает с такой же скоростью). Если же, наоборот, нанести удар крайним правым элементом, то вместо передачи импульса и энергии, он просто отскочит после мягкого толчка по всей системе.  [c.225]


Полупроводники представляют собой обширную группу веществ, занимающих по величине удельной объемной проводимости промежуточное положение между диэлектриками и проводниками. Возможность получения различного характера электроироводности — электронной и дырочной — и управления ею составляет одну из важных отличительных особениосте полупроводников. В периодической системе имеется 12 элементов, обладающих полупроводниковыми свойствами это так называемые элементарные или простые полупроводники (основной состав полупроводника образован атомами одного химического элемента). Такими элементами являются в III группе — бор в IV группе — углерод, кремний, германий, олово (серое) в V группе — фосфор, мышьяк, сурьма в VI группе —сера, селен, теллур в VII группе — йод. Достаточно отчетливо можно представить общие закономерности и особегнюсти элементарных полупроводников, рассматривая такие полупроводники, как германий и кремний ( 13.5 и 13.6).  [c.171]

Использующиеся в практике полупроводники могут быть подразделены на простые полупроводники (их основной состав образован атомами одного химического элемента) и сложные полупроводниковые композиции, основной состав которых образован атомами двух или большего числа химических элементов. В настоящее время изучаются также стеклообразные и жидкие полупроводники. Простых полупроводников существует около десятка, они приведены в табл. 8-2. В современной технике особое значение приобрели кремний, германий и частично селен. Сложными полупроводниками являются соединения элементов различных групп таблицы Менделеева, соответствующие общим формулам (например, Si ), A4 Bv (InSb, GaAs, GaP), A B>v ( dS, ZnSe), a также некоторые  [c.230]

Общие представления. Для большинства полупроводниковых приборов используются примесные полупроводники. Поэтому в практике важное значение имеют такие полупроводниковые материалы, у которых ощутимая концентрация собственных носителей заряда появляется при возможно более высокой температуре, т. е. полупроводники с достаточно широкой запрещенной зоной. В рабочем интервале температур поставщиками свободных носителей заряда являются примеси. Примесями в простых полупроводниках служат чужеродные атомы. Под примесями в полупроводниковых химических соединениях понимают не только включения атомов посторонних элементов, но и избыточные по стехиометрическому составу атомы тех самых элементов, которые входят в химическую формулу самого соединения. Кроме того, роль примесей играют всевозможные дефекты кристаллической решетки пустые узлы, атомы или ионы, оказавшиеся в междоузлиях решетки, дислокации или сдвиги, возникающие при пластической деформации кристалла, микротре-дины и т. д. (стр. 12). Если примесные атомы находятся в узлах кристаллической решетки, то они называются примесями замещения, если в междоузлиях — примесями внедрения.  [c.233]

При длинах волн, превышающих граничную (с учетом теплоЕого хвоста ), энергии квантов оказываются недостаточными для образования электронно-дырочных пар, и простые полупроводники можно считать прозрачными в этих областях спектра (правее максимума кривой). Однако небольшое оптическое поглощение все же происходит вследствие того, что в полупроводнике имеется некоторое число свободных электронов и дырок  [c.246]

Простые полупроводники. Из простых полупроводников наибольшее применение нашлн кремний и германий. Некоторые физико-химические Свойства германия и кремния приведены в табл. 74.  [c.569]

Химические методы получения простых полупроводников и чистых элементов, используемых при легировании и в производстве сложных полупроводниковых материалов, обеспечивают высокую степень очистки. Дистилляцией (испарение жидкой фазы) удаляют легкоиспаряющи-еся примеси, ректификацией (многократное испарение и конденсация) — примеси, имеющие невысокие температуры плавления, испарения и большой интервал жидкого состояния. Сублимацией (испарение твердой фазы) очищают от механических примесей и газов и получают монокристалл. Перечисленными методами можно получать монокристаллы с высоким значением удельного электросопротивления. Например, монокристалл германия при р = 0,10 Ом -м содержит в 1 м 10 ° атомов примесей (см. рис. 18.10).  [c.590]

Карбид кремния относится к алмазоподобным полупроводникам и является электронным аналогом простых полупроводников - элементов 1УЬ подгруппы периодической системы (см. табл. 1.1) ос-8п, Се, 81, алмаз. Он имеет множество политипных модификаций (свыше 140), являющихся производными от гексагональной а-81С (тип вюрцита 2п8, рис. 15.1) и кубической Р-81С (тип сфалерита, цинковой обманки 2п8 (см. рис. 1.7, если светлые шары будут принадлежать одному элементу, а темные -другому)) плотнейших кристаллических упаковок.  [c.652]

Если поступить так, то прежде всего обнаружи-м, что (1.35) достаточно хорошо дает значеиия статической диэлектрической проницаемости для простых полупроводников алмаза, Si, Ge, a-Sn. Все другие полупроводники с тетраэдрическим расиоложенпем связей можно получить из нолупроводииков IV группы периодической системы замещением половины атомов решетки иа (4 — и)-валентные атомы, а второй половины — на (4 + п)-валентные ато.чы (III—V, II—VI, I—VII-соедииенпя). Ввиду различия ближайших  [c.37]

Ес известно по соответствующему простому полупроводнику, Еа следует пз (1.35). Следовательно, С а f могут быть определены для каждого из полупроводников с тетраэдрическим расположопием связей.  [c.38]

Из-за неизвестного вида фупкцпп 17(г) трудно обсуждать (2.2) в общем виде. Простейший внд этой функции получаем, если в качестве дефекта рассматриваем атом — донор в простом полупроводнике, т.е. (п + 1)-ва.1ентный атом в ковалентно связанной решетке /г-валснтных атомов. Атом — донор вносит тогда один электрон и один дополнительный положительный заряд атомного ядра. Этот электрон не нужен для ковалентных связей с ближайшими соседя-мн. В этом случае 17(г) есть потенциал дополнительного положительного заряда, в поле которого движется добавочный электрон.  [c.70]

В структуре типа алмаза с двумя атомами на примитивную ячейку каждый атом (углерода, кремния или германия) отдает четыре электрона. Таким образом, количество электронов (восемь на примитивную ячейку) оказывается как раз достаточным, чтобы заполнить четыре зоны. Мы видим, что в основном состоянии германия первые четыре зоны целиком заполнены (зоны Лз и Л5 дважды вырождены), в то время как пятая и следующие зоны совершенно пусты. Чтобы перевести электрон из основного состояния системы в возбужденное, требуется вполне конечная энергия (в случае германия около 0,6 эВ). В кремнии и алмазе такие энергетические пороги, или энергетические щели, больше. Наличие в основном состоянии энергетических щелей, целиком заполненных нижних или валентных зон и пустых более высоколежащих зон, или зон проводимости, типично для полупроводников. Что же касается изоляторов, то это просто полупроводники с большими энергетическими щелями, а сами зоны в них, как правило, еще уже.  [c.107]


Полупро- водники Простые полупроводники Сложные полупроводниковые соединения и их твердые раствЪры Ферриты а-кварц, сегнетоэлектрики Окислы металлов Генераторы электромагнитных колебаний, усилители и выпрямители тока, преобразователи энергии, магнитные устройства, сегнетоэлектриче-ские устройства, катализаторы  [c.217]

МОЖНО судить О характере дефекта. Так, изучение /-центров в кристаллах галогенидов щелочных металлов методом ЭПР показывает, что их электронная волновая функция является линейной комбинацией 5- и р-орбиталей электронов иона натрия при некотором перекрывании с волновой функцией иона галогена. Подобные исследования были проведены на простых полупроводниках при изучении различных дефектов, в частности кластеров, образующихся при взаимодействии дефектов (см. гл. 7). Было показано, что ЭПР —это уникальный метод идентификации структуры сложных дефектных центров. Например, при облучении кремния частицами с высокой энергией образуются дефекты, одним из которых, как показал анализ, спектров ЭПР, оказался атом примеси кислорода, расположенный рядом с вакансией. Метод ЭПР применяется для детального исследования электронной структуры центров, например парамагнитного иона Мп в инертной матрице А12О3, и позволяет объяснить некоторые важные оптические и магнитные свойства твердого тела.  [c.84]

Простая модель электронного газа, созданная Друде в 1900 г., успещно предсказала законы Ома и Видемана — Франца. Однако она не объяснила зависимость электропроводности от температуры, а также магнитные свойства и малую величину электронной теплоемкости по сравнению с классическим значением 3/ . В настоящее время ясно, почему удельное сопротивление особо чистых металлов падает от типичного для комнатных температур значения 10 мкОм см до значения менее 10 з мкОм -см при температуре жидкого гелия в то время как удельное сопротивление концентрированного сплава падает всего в два раза в том же диапазоне температур. Поведение полупроводников также хорошо понято удельное сопротивление экспоненциально возрастает при уменьшении температуры, и при очень низких температурах чистые полупроводники становятся хорошими диэлектриками. Добавка в образец полупроводника небольшого количества примесей чаще всего существенно уменьшает удельное сопротивление (в противоположность чистым металлам, в которых наличие примесей ведет к увеличению удельного сопротивления).  [c.187]

Фотопроводимость. Внутренний фотоэффект, или фотопроводимость, — это явление возникновения внутри полупроводника избыточных носителей тока под действием освещения. В простейшем случае собственного полупроводника излучение возбуждает валентные электроны в зоне проводимости, где они находятся в свободном состоянии и могут участвовать в процессе переноса заряда. Вклад в прО Зодимость дают также возникаюш,ие в валентной зоне дырки. В примесном полупроводнике -типа кроме собственного фотоэффекта возможно еще возбуждение электронов из связанных состояний на донорных центрах в зону проводимости. Аналогичным образом в полупроводниках р-типа возможно возбуждение электронов из валентной зоны на акцепторные уровни, создавая тем самым подвижные дырки. Характерно, что в обоих случаях" примесной фотопроводимости в кристалле генерируются свободные носители только одного знака. Так же, как и внешний фотоэффект, фотопроводимость проявляется в однородном материале в присутствии внешнего электрического поля.  [c.346]

В случаях, когда y-jaT во много раз больше L, так что у. > у. определяется очень просто и лишь с небольшой ошибкой, связанной с не-определеиностью в Этот случай реализуется у висмута при низких температурах и в меньшей степени у некоторых плохих металлов и, естественно, у полупроводников.  [c.289]

Примером простого донорного примесного центра в полупроводнике является кристалл кремния с одним атомным узлом, занятым атомом фосфора. Каждый атом в кристалле кремния образует ковалентные связи с четырьмя ближайшими соседями. Это означает, что атом фосфора обладает лишним валентным электроном, который не нужен для связи. Этот электрон непол1ностью свободен, так как ядро фосфора имеет больший положительный заряд, чем ядро атома кремния. Но лишний электрон связан со своим ядром недостаточно прочно, что позволяет ему перемещаться в окрестностях данного примесного центра. Для сохранения нейтральности примесного центра электрон должен л о к а- лизоваться в запрещенной зоне ниже дна зоны проводимости, т. е. электрон может перейти в нелокалйзованное бло-ховское состояние, получив дополнительную энергию не менее АЕй. Тогда донор становится ионизованным и ведет себя как локализованный положительный заряд.  [c.92]

Чтобы выполнить такой расчет, необходимо задаться конкретным видом функций Ыс(Е) и Ы (Е). Раоомотрим простейший случай полупроводника с одним сферически симметричным минимумом энергии в зоне про1ВодИ(Мости, которому соответствует скалярная эффективная масса электрона щ , а также с одним сферически симметричным максимумом в валентной зоне со скалярной эффективной массой дырки Шр. С учетом формул (3. 15) и (3.24) при малых значениях Е и (—АЕ—Е) получим  [c.111]

Парамагнитная восприимчивость полупроводников, обусловленная примесными носителями, в простейшем случае зависит от температуры экспоненциально Xi/ = ЛГ /- ехр (—Де/(2 kT)), где А — константа вещества Де — uJiiDHHa запрещенной зоны полупроводника.  [c.594]

Если излучение полупроводника возникает в результате непосредственной рекомбинации электрона с дыркой или рекомбинации через локальный центр, то излучение называют рекомбинационным. Вещества, обнаруживающие рекомбинационную люминесценцию, называют кристаллофорами шш просто фосфорами. Практически все типичные фосфоры являются полупроводниками.  [c.73]

Электропроводность внутри молекулы обусловлена я-электрона-ми, которые, как сказано, принадлежат всей сопряженной системе в целом и обладают высокой подвижностью. Электропроводность за счет а-электронов в нормаль- ных условиях маловероятна, так как освобождение о-электрона требует около 8 эв и сопровождается разрывом молекулы (с простыми связями), т. е. деструкцией молекулы. Осуществление электронной проводимости внутри молекулы, таким образом, возможно лишь при наличии сопряженных связей. Процессы перехода электронов между молекулами органических полупроводников носят активационный характер и изучены еще слабо. Электропроводность полимерных полупроводников с ростом длины цепп сопряжения увеличивается, так как при этом увеличивается степень делокализации я-электронов и снижается энергия активации. Действительно если я-электронов в молекуле с сопряженными связями имеется N, то энергия активации (термич-еская)  [c.207]

На рис. 7.5, а показаны теоретические зависимости подвижности от температуры в полупроводнике для невырожденного и вырожденного электронного газа, а на рис. 7.5, б — экспериментальные кривые для кремния, содержащего различное количество легирующей яримеси. Из рис. 7.5 видно, что опыт в основном подтверждает выводы развитой выше простой теории.  [c.187]

Для всех этих устройств в приборостроении технически обосновано и экономически целесообразно изготовлять специальные интегральные схемы высокой степени интеграции на базе технологии МДП (металл—диэлектрик—полупроводник) структур. Основные достоинства МДП-структур — более простая технология формирова-  [c.413]


Смотреть страницы где упоминается термин Простые полупроводники : [c.283]    [c.685]    [c.171]    [c.172]    [c.947]    [c.206]   
Смотреть главы в:

Конструкционные и электротехнические материалы  -> Простые полупроводники



ПОИСК



Полупроводники

Полупроводники Простая модель полупроводника

Полупроводниковые Простые полупроводники

Простые комплексы на поверхностях полупроводников Грин и М. Дж. Ли)



© 2025 Mash-xxl.info Реклама на сайте