Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические Силы трения

Согласно принципу возможных перемещений необходимым и достаточным условием равновесия механической системы является равенство нулю суммы элементарных работ всех активных сил (и сил трения если они совершают работу) на любом возможном перемещении системы, т. е. условие В обобщенных коорди-  [c.375]

Наиболее опасными для технических объектов оказываются вибрационные воздействия. Знакопеременные напряжения, вызванные вибрационными воздействиями, приводят к накоплению повреждений в материале, что вызывает появление усталостных трещин и разрушение. Кроме усталостных напряжений в механических системах наблюдаются и другие явления, вызываемые вибрациями, например постепенное ослабление ( разбалтывание ) неподвижных соединений. Вибрационные воздействия вызывают малые относительные смещения сопряженных поверхностей в соединениях деталей машин, при этом происходит.изменение структуры поверхностных слоев сопрягаемых деталей, их износ и, как результат, уменьшение силы трения в соединении, что вызывает изменение диссипативных свойств объекта, смещает его собственные частоты и т. п.  [c.272]


Конструкционное демпфирование в неподвижных соединениях. Наряду с внешними демпфирующими факторами на колебания механических систем заметное влияние могут оказать энергетические потери внутри самой конструкции (конструкционное демпфирование). Эти потери происходят из-за трения в кинематических парах, а также в соединениях типа прессовых, шлицевых, резьбовых, заклепочных и т. п. Хотя такие соединения принято называть неподвижными, в действительности при их нагружении неизбежно возникают малые проскальзывания по контактным поверхностям на соответствующих относительных перемещениях силы трения совершают работу.  [c.282]

Предположим, что в рассматриваемой механической системе все связи являются стационарными, двусторонними и идеальными, а силы трения, если они имеются, отнесем к задаваемым силам. Тогда сумма работ реакций связей на возможных перемещениях долл<на быть равна нулю  [c.303]

Двигатель включается в начальный момент времени (t = 0), когда система находится в покое. Наличие силы трения покоя (сцепления), приложенной к тсд-у А со стороны опорной плоскости, приводит к тому, что движение механической системы начинается только через т с после включения двигателя. Затем скорость поступательного движения системы возрастает до некоторого значения и.. В дальнейшем производится торможение и скорость поступательного движения системы на пути s снижается до значения 0,9 v,.  [c.266]

Может показаться, что имеется глубокое противоречие между постулатом о равновесии и законами классической механики, по которым существующее в изолированной системе макроскопическое движение является вечным. В действительности, однако, с одной стороны, при описании поведения реальных макроскопических тел в механике вводятся силы трения. Учет трения является не чем иным, как термодинамической поправкой к механическим моделям, приводящей, как и постулат О равновесии в термодинамике, к выводу о затухании направ-  [c.19]

Решение. Земля вращалась вокруг своей оси, имея на поверхности (относительно) неподвижный поезд. Она совершала один оборот за 86 400 се/с. По Земле с запада на восток пустили поезд с искомой относительной скоростью v . Поезд двигался вперед, отталкиваясь силой трения и с такой же силой (по закону равенства действия и противодействия) отталкивая Землю. Механическое движение поезда передалось Земле в качестве механического же движения, угловая скорость Земли уменьшилась, и Земля стала делать один оборот за 86 401 сек. Ввиду того что переход механического движения от одного тела к другому связан с вращением, применим теорему моментов для системы, понимая под системой Землю и поезд. Примем физическую систему единиц.  [c.348]


Условия равновесия не всегда можно написать в виде равенства. Иногда они выражаются и неравенствами. Неравенствами, например, обычно выражаются тр- - макс- условия равновесия при наличии сил трения. Трение материальных тел относится к области физики, потому что оно порождается не только причинами механического  [c.98]

Пример 3.9.6. Возьмем механическую систему такую же, как в примере 3.9.2, с тем лишь отличием, что ролики, поддерживающие доску, вращаются в противоположном направлении. При этом силы трения будут направлены от середины доски. Уравнение движения примет вид  [c.224]

Одними из важнейших в категории сил непроизводственного сопротивления являются силы трения, местом приложения которых являются элементы кинематических пар. Вопрос о природе трения разбирается подробно в курсе физики процесс трения представляется как совокупность сложных физических, химических и механических явлений, происходящих при относительном движении тел.  [c.241]

Превращения энергии. Механическая энергия сохраняется не при любых взаимодействиях тел. Закон сохранения механической энергии не выполняется, если между телами действуют силы трения.  [c.50]

Кран поднимает груз массой 2 т на высоту 24 м за 2 мин. Найдите механическую мощность. Силами трения пренебречь.  [c.62]

Наконец, скажем несколько слов о роли силы трения в механических явлениях.  [c.250]

Простейшее физическое представление о работе можно получить на примерах подъема груза или его перемещения по горизонтальной негладкой плоскости. Очевидно, чем больше сила тяжести груза и чем выше он поднят, тем больше мера механического действия силы, т. е. тем большая совершена работа. Если груз перемещается по горизонтальной плоскости, то с увеличением силы тяжести возрастает сила трения, а следовательно, увеличивается и работа. Ве- у  [c.149]

Работа фрикционной передачи основана на использовании сил трения. Это один из простейших видов механических передач. Применяется преимуш ественно для передачи небольшой мощности.  [c.339]

Простейшее физическое представление о работе можно получить на примерах подъема груза или его перемещения по горизонтальной негладкой плоскости. Очевидно, чем больше сила тяжести груза и чем выше он поднят, тем больше мера механического действия силы, т. е. тем большая совершена работа. Если груз перемещается по горизонтальной плоскости, то с увеличением силы тяжести возрастает сила трения, а следовательно, увеличивается и работа. Величина работы зависит как от величины силы, прикладываемой для перемещения тела (или материальной точки), так и от величины самого перемещения (пройденного пути).  [c.141]

Именно, если имеется некоторая механическая система, движение которой сопровождается диссипацией энергии, то движение может быть описано посредством обычных уравнений движения, в которых надо только к действующим на систему силам добавить диссипативные силы или силы трения, являющиеся линейными функциями скоростей. Эти силы могут быть представлены в виде производных по скоростям от некоторой квадратичной функции скоростей, называемой диссипативной функцией R. Сила трения /а, соответствующая какой-нибудь из обобщенных координат qa системы, имеет тогда вид  [c.178]

Решение. Изобразим активные силы Р1, Ра и (Р р — сила трения, которую мы включаем в число активных сил) и выбираем оси координат так, как показано на чертеже. Положение данной механической системы определяется двумя обобщенными координатами координатой X точки В и углом <р поворота маятника, т. е.  [c.774]

Наличие трения покоя приводит к тому, что во всех случаях, где действующие силы должны вызвать скольжение соприкасающихся поверхностей, нужны конечные силы для того, чтобы вызвать движение. Это обстоятельство играет важную роль в ряде случаев, например, в различных измерительных приборах. Большинство измерительных приборов, не только механических, но и электрических, основано на измерении смещений стрелки или другого указателя под действием тех или иных сил. Измеряя смещения указателя, мы определяем силы, вызвавшие это смещение, и по ним судим об измеряемой величине (давлении, ускорении, силе тока и т. д.). Но движение указателя в обычных технических приборах почти всегда связано с возникновением скольжения. Ось стрелки прибора обычно укрепляется в подшипниках, и вращение стрелки связано со скольжением оси в подшипнике. Движение стрелки может начаться только после того, как действующая на стрелку сила (которую мы и хотим измерить) достигнет некоторого конечного значения, превосходящего максимальную силу трения покоя в подшипниках з).  [c.202]


Этот закон справедлив при движении под действием любой потенциальной силы при действии же непотенциальных сил (например, силы трения) механическая энергия переходит в другие виды энергии.  [c.155]

Управляемые муфты. Механические муфты этого класса бывают синхронные (допускающие переключение только при равных или почти равных угловых скоростях ведущей и ведомой частей) и асинхронные (позволяющие производить переключение при различных угловых скоростях ведущей и ведомой частей). У асинхронных муфт вращающий момент передается за счет сил трения поэтому такие муфты называются фрикционными. Они дают возможность плавного сцепления ведущего и ведомого валов под нагрузкой.  [c.250]

Силы трения обусловливают то, что слой жидкости, движущийся быстрее, увлекает слой жидкости, движущийся медленнее, и наоборот. Благодаря силам трения происходит преобразование механической энергии движущейся жидкости в тепловую.  [c.18]

Течение газов при наличии трения не будет изоэнтропным, так как из-за действия сил трения происходит диссипация (рассеяние) механической энергии и превращение части ее в теплоту, в результате чего внутренняя энергия, энтальпия и энтропия движущегося газа возрастают. Этот процесс можно изобразить на /-s-диаграмме (рис. 10.8) в виде линии 1-2. Теплота трения при отсутствии теплообмена с окружающей средой усваивается потоком газа, при этом часть теплоты трения идет на работу расширения и преобразуется в энергию движения газа (пл. 122 ) (рис. 10.9). Остальная часть представ-  [c.138]

В качестве примера по вычислению прироста энтропии вследствие действия сил трения рассмотрим процесс в приборе Джоуля для определения механического эквивалента теплоты (рис. 2.24). В этом приборе, как известно, вся затрачиваемая внешняя работа Ggh переходит в теплоту трения, вызывая нагревание жидкости от температуры до То . Если этот  [c.63]

В пограничном слое в зависимости от положения линии тока вдоль нее может происходить или ускорение, или торможение течения, сопровождаемое диссипацией механической энергии. В связи с этим вдоль произвольной линии тока, проходящей хотя бы частично в пределах пограничного слоя, перепад —р расходуется не только на изменение кинетической энергии, но и на преодоление сил трения. В частности, формулу (8.118) можно рассматривать как энергетическое уравнение для той линии тока, вдоль которой кинетическая энергия не изменяется и весь перепад давления расходуется на преодоление сил трения.  [c.356]

Заметим, что если бы мы рассматривали теплоизолированное движение газа с трением, то и в этом случае уравнение (11.19) Бернулли оказалось бы справедливым. Действительно, хотя на преодоление сил трения была бы израсходована часть механической энергии, но она преобразовалась бы в теплоту, что привело бы к увеличению внутренней энергии U, поэтому сумма t + иУ2 осталась бы неизменной.  [c.413]

Диссипация энергии состоит в том, что часть механической энергии необратимо переходит в теплоту. В соответствии с этим силы трения называются диссипативными. Таким образом, в (3.2) диссипативными являются все члены уравнения, содержащие динамическую вязкость р..  [c.80]

При этом следствием появления Фтх является, как отмечалось выше, увеличение общих сил трения на границах потока, что в продуваемых системах (например, газовзвеси) проявляется в дополнительной потере давления (Арт), а в гравитационных (непродуваемых) системах— в возникновении поперечного градиента скорости слоя. Статические давления компонентов потока р и рт в общем случае нельзя принимать равными. Они отличаются не только на капиллярное давление при большой дисперсности частиц [Л. 279], но и имеют разное приложение в случае связанного движения плотного слоя частиц gradpT также учитывает внутреннее напряжение в материале частицы, которое может возникнуть из-за механических или термических причин. Проекция равнодействующей сил инерции компонентов на ось х равна изменению количества движения элемента Ах Ау Az зо времени по оси х  [c.38]

Ультразвуковая сварка относится к продесса.м, в которых используют давление, нагрев и взаимное трение свариваемых поверхностей. Силы трения возникают в результате действия на заготовки, сжатые осевой силой Р, механических колебаний с ультразвуковой частотой. Для получения механических колебаний высокой частоты используют магннтострикциоииый эффект, основанный на изменении размеров некоторых материалов под действием переменного магнитного поля. Изменения размеров магнитострикцпоипых материалов очень незначительны, поэтому для увеличения амплитуды и концентрации энергии колебаний и для передачи механических колебаний к месту сварки используют волноводы, в большинстве случаев сужающейся формы.  [c.223]

Расчет прессовых соединений на коррозионно-механическое изнашивание пока не разработан, но известны методы снижения или даже устра1(ения этого вида изнашивания повышение твердости поверхностей посадки уменьшение напряжений а и т путем увеличения диаметра в месте посадки увеличение давления посадки р, а следовательно, и сил трения, которое сокращает распространение деформаций внутрь ступицы и уменьшает относительные перемещения образование кольцевых проточек по торцам ступицы (см. рис. 7.8). Эти проточки увеличивают податливость ступицы, позволяют ей деформироваться вместе с валом и уменьшают микросдвиги.  [c.90]

Исходные данные перечислены в начале 4.6. Так как станок запускается в режиме холостого хода, т. е. когда нет процесса резания, то вся энергия электродвигателя расходуется на увеличение кинетической энергии агрегата и на преодоление потерь трения. Наиболее сил1)Но трение проявляет себя между ползуном 5 и неподвижной направляюигей. Силу трения / , в этой поступательной паре в первом приближении можно принять постоянной (рис. 4.16, б). Трение в других кинематических парах учитывать не будем, поскольку оно относительно слабо выражено. Точно так же опустим влияние сил тяжести. Механическая характеристика асинхронного электродвигателя /Vl(iOp i) изображена на рис. 4.16, в. Пусть начальные условия движения таковы при t = имеем ((, = =  [c.161]


Ясно, что эта работа будет тем больше, чем больше величина внешних сил, против которых она совершается. Газ, вытекающий из баллона, совершит тем больше работы, чем с большей силой лопасти турбинки будут противодействовать его истечению. Но максимальная величина этой силы определяется давлением в баллоне. Если давление внешних сил будет больше, газ не будет вытекать, он будет, наоборот, закачиваться обратно. Таким образом, для ползшения максимальной работы нужно переводить систему в равновесное состояние так, чтобы все время удерживать ее в механическом равновесии с внешними силами. При этом скорость перехода будет бесконечно мала, силы трения будут отсутствовать , процесс будет обратимым, и полная энтропия системы будет оставаться неизменной.  [c.111]

Механическое движение нигде и никогда не может произвести работу, если оно не будет но видимости уничтожено как таковое, если оно не превратится в какую-нибудь другуюформу движения . Так, например, работа сил трения, тормозящих движение тела, работа сил тяжести поднимаемого груза, работа сил упругости пружины, останавливающей движущееся тело, являются мерами уничтожаемого механического движения, которое превращается в теплоту, потенциальную энергию, энергию упругого тела.  [c.158]

Состави.м дифференциальные уравнения, описывающие движение механической системы (рис. 197, а). К колесу В приложены вращающий момент М, сила тяжести G = mgg, нормальная реакция в опорной точке К и сила сцепления Есп, предположительно направленная вправо. На тело А действуют сила тяжести Q = т , приложенная в центре тяжести С, реакция Yp, сила трения Xo=fYo и реактивный момент корпуса двигателя М. Силы взаимодействия в точке О. между телом А и колесом В являются реакциями внутренних идеальных связей и не показаны на рисунке. При расчленении системы на части (рис. 197, б, в) в точках О прикладываются силы взаимодействия Хо = Х о и Yq = Y q между телами Л и В.  [c.271]

Примеры такого уменьшен я механической энергии системы в результате действия сил трения мы наблюдаем на каждом i ary. Всяк Й раз, когда отсутствуют внешние силы, работа которых могла бы 1ополиить убыль энергии, в ) званную силам трения, движения в системе затухают,  [c.143]

В замкнутой системе, в которой действуют силы трения, полная механическая энергия системы при движении убывает ). Следовательно, в этих случаях закон сохранения энергии в узко механическом смысле гесправедл в. Однако пр таком исчезновении механической энергии всегда возникает эквивалентное количество энергии другого вида. В частности, если уменьн ение механической энергии обусловлено действием сил трен я, то при этом всегда выделяется определенное количество тепла, эквивалентное исчезнувшему количеству механической энергии.  [c.143]

Выясним, как изменяется полная энергия шаров при центряльрюм абсолютно неупругом ударе. Поскольку в процессе соударения шаров между ними действуют силы, зависящие не от величин самих деформаций, а от скоростей деформации, т. е. силы, подобные силам трения, то ясно, что закон сохранения энергии в его механическом смысле не должен соблюдаться. Действительно, кинетическая энергия двух шаров до удара  [c.148]

Если на те.ло действуют только упругие силы (силы трения отсутствуют), то при д ,ижении тела соблюдается закон сохранения энергии в его механической форме, т, е. полная энергия системы (в которую входит кинетическая энергия движущегося тела и потенциальная энергия деформации действующих на него упругих тел) должна осгаваться постоянной. Применение закона сохранения энергии не может дать ничего  [c.167]

В механических явлениях процесс трения обусловливает ме.ка-ничсское сопротивление относительному движению соприкасающихся тел или частей тел, характеризуемое силами трения.  [c.152]


Смотреть страницы где упоминается термин Механические Силы трения : [c.482]    [c.212]    [c.70]    [c.158]    [c.119]    [c.225]    [c.145]    [c.47]    [c.217]    [c.26]   
Прочность Колебания Устойчивость Т.3 (1968) -- [ c.218 , c.224 ]



ПОИСК



Адгезионная и механическая составляющие силы трения

Расчёт механической составляющей силы трения

Сила трения

Силы механические

Трение сила трения



© 2025 Mash-xxl.info Реклама на сайте