Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллическая структура рентгеновских лучей

В гл. 5 мы увидим, что использование результатов дифракции рентгеновских лучей для определения расположения атомов в кристаллах оказывается, по существу, приложением теории формирования оптического изображения Аббе-Портера. Тесная аналогия между принципами построения изображения кристаллической структуры рентгеновскими лучами и формированием обычного оптического изображения было основным предметом интереса для сэра Лоуренса Брэгга на протяжении почти всей его жизни, предметом, в который он внес значительный вклад.  [c.46]


Благодаря методу Лауэ решаются две задачи огромной важности. Во-первых, открывается возможность определения длины волны рентгеновских лучей, если известна структура той кристаллической решетки, которая служит в качестве дифракционной. Таким образом создалась спектроскопия рентгеновских лучей, послужившая для установления важнейших особенностей строения атома (ср. 118). Во-вторых, наблюдая дифракцию рентгеновских лучей известной длины волны на кристаллической структуре неизвестного строения, мы получаем возможность найти эту структуру, т. е. взаимное расстояние и положение ионов, атомов и молекул, составляющих кристалл. Таким путем был создан структурный анализ кристаллических образований, легший в основу важнейших заключений молекулярной физики.  [c.231]

Все три способа наблюдения дифракции волн на кристаллических структурах были успешно использованы для изучения дифракции рентгеновских лучей. Это позволило экспериментально доказать электромагнитную природу рентгеновского излучения и определить длину волны рентгеновского излучения, поскольку  [c.51]

Под рентгенографическим анализом понимается совокупность разнообразных методов исследования, в которых используется дифракция рентгеновского излучения - поперечных электромагнитных колебаний с длиной волны 10 -10- Л. Применение рентгеновского излучения для исследования кристаллических веществ основано на том, что его длина волны сопоставима с расстоянием между упорядоченно расположенными атомами в решетке кристаллов, которая для него является естественной дифракционной решеткой. Сущность рентгенографических методов анализа как раз и заключается в изучении дифракционной картины, получаемой при отражении рентгеновских лучей атомными плоскостями в структуре кристаллов.  [c.158]

Таким образом, проведенные рентгеноструктурные исследования свидетельствуют о формировании в результате ИПД состояния, характеризующегося размером зерен-кристаллитов в десятки нанометров, высоким уровнем микроискажений, измененным параметром кристаллической решетки, повышенными атомными смещениями, пониженной температурой Дебая, несколько повышенным диффузным фоном рассеяния рентгеновских лучей. Все это свидетельствует о специфичности дефектной структуры наноматериалов, полученных с использованием интенсивных деформаций, что должно быть учтено при разработке структурной модели ИПД материалов (см. 2.3).  [c.80]


Первые эксперименты по расшифровке кристаллических структур проводились с помощью Рентгеновских лучей. Они оказались исключительно удобными инструментами структурного анализа. Удобными, но не единственными. Электромагнитная волна, которой мы хотим зондировать кристалл, должна иметь длину 0,1 нм. Существуют ли в этом диапазоне другие виды излучения, кроме рентгеновского .  [c.95]

Теория закономерного расположения атомов в пространстве, определяющая симметрию кристаллов, была предложена еще в конце прошлого века (Е. С. Федоров, 1890). Подтверждение кристаллической структуры было получено в начале XX в. после открытия явления дифракции рентгеновских лучей в кристаллах (Лауэ, 1912).  [c.37]

На наше счастье мы можем получить эту усиленную выборку рентгеновских лучей, рассеянных от одиночной ячейки кристалла. Если бы даже и удалось изолировать одну ячейку кристалла и работать с ней, рассеянное ею рентгеновское излучение бьшо бы слишком слабым для измерений. В действительности мы имеем дело с необычайно усиленными сигналами реального кристалла. Цена, которую мы платим за это, состоит в том, что сигналы ограничены некоторыми направлениями, определяемыми геометрией кристаллической решетки. Однако число этих направлений достаточно велико и позволяет построить очень детальную картину расположения атомов и распределения электронной плотности в кристаллической структуре. (Дифракция рентгеновских лучей на некристаллических веществах, таких, как стекло и жидкости, также дает информацию об их структуре, но детальное обсуждение этого вопроса остается за рамками настоящей книги.)  [c.46]

Пример аналогии между дифракцией рентгеновских лучей на кристаллах и первой стадией формирования оптического изображения решетчатого объекта показан на рис. 5.7. На рис. 5.7, а изображена часть оптической маски, представляющей собой двухмерную проекцию кристаллической структуры фталоцианина на рис. 5.7,6 показана оптическая дифракционная картина, создаваемая ею [10]. Рис. 5.7,6 согласуется с данными рентгеновских исследований не только в отношении геометрии расположения пятен но и по соответствию экспериментально наблюдаемой рентгеновской интенсивности картине на рисунке. Исторически этот метод вначале применялся для определения неизвестной кристаллической структуры путем изготовления пробных масок на основе химических и других соображений. Он был существенно упрощен при дальнейшем развитии техники (см. конец раздела 2), когда было показано, что основная ячейка и только три периода вполне достаточны в качестве маски, поскольку они определяют структуру, на которой основана двухмерная проекция кристалла. Это иллюстрируется рис. 5.6, где в случае в в качестве маски было использовано большое число повторов (намного больше, чем показано на рисунке) основной ячейки, тогда как в случае д было использовано только четыре ячейки, определяющих структуру кристаллической решетки. Сравнение оптических преобразований показывает, что д вполне достаточно в сравнении сев данной выборке преобразования одной ячейки б на узлах взаимной решетки (преобразование) от основной решетки а.  [c.99]

Как упоминалось выше, отсутствие экспериментальных данных о фазе рентгеновских лучей, которые необходимы, чтобы формирование изображения завершилось оптическим восстановлением, не позволяет использовать этот метод для обычного определения кристаллической структуры. Решение указанной проблемы- проблемы фазы рентгеновской кристаллографии-было достигнуто в основном благодаря развитию математических методов, позволяющих делать выводы о фазах с помощью ЭВМ, исходя из данных об интенсивности рентгеновских лучей и существования определенных граничных условий, таких, как конечные размеры атомов и отсутствие отрицательной - электронной плотности.  [c.102]

Открытие дифракции рентгеновских лучей в начале XX столетия и его большое значение для изучения деформации монокристаллов дало начало многим новым интересным проблемам. Возможность анализировать кристаллографическую ориентацию и структуру в результате позволила рассматривать пластичность кристаллов в терминах несовершенств и дислокаций. С 1925 г. большая часть литературы о больших деформациях кристаллических тел представляла макроскопические деформации как побочный факт при исследовании или как факт для подтверждения той или иной атомной модели при большом разнообразии параметров материалов, включая чистоту, размеры зерен, ориентацию, предшествовавшие испытанию термическую и механическую истории, диффузию и т. д. и т. п.  [c.177]


В обоих типах экспериментов при локальном воздействии света на кристалл наблюдалось уменьшение аномального прохождения рентгеновских лучей в освещенной области, что свидетельствовало об искажении кристаллической структуры кристалла. Наблюденные на то-программах искажения были вызваны деформацией плоскостей ООЮ, перпендикулярных сегнетоэлектрической оси. Деформация плоскостей (МО), параллельных сегнетоэлектрической оси, была значительно слабее.  [c.311]

Формирование слоистой структуры в результате диффузионных и деформационных процессов в присутствии поверхностноактивной смазочной среды обусловливает усложненную картину рентгенограммы металла с ГЦК решеткой кроме основных линий твердого раствора появляется другая система линий, соответствующая отражению рентгеновских лучей от кристаллографических плоскостей медной пленки. По соотношению интегральных интенсивностей интерференционных линий разных фаз можно оценить толщину отражающих слоев. Особенно отчетливо выявляются две системы линий на рентгенограммах образцов с высоким начальным содержанием цинка, приводящим к увеличению разности периодов кристаллических решеток. На рис. 61 приведены две рентгенограммы, полученные после испытания на трение латуни Л63 в течение 17 и 40 ч. Соотношение интенсивностей линий сви-154  [c.154]

Рентгеновский метод применяется только для материалов с кристаллическими структурами, так как он основан на явлении интерференции рентгеновских лучей, проходящих через кристаллическую решетку образца.  [c.145]

Идеальный кристалл должен отражать в угловой области порядка 3— 5. Угловое уширение отражения от металлического монокристалла много больше, чем у идеального, и обычно составляет несколько сотен секунд. Для объяснения таких особенностей в характере рассеяния рентгеновских лучей Дарвин ввел предположение (1922) о мозаичной структуре кристаллов. Мозаичным называют кристалл, состоящий из независимых совершенных областей (блоков), кристаллическая решетка которых ориентирована почти параллельно относительно друг друга, так что наблюдается лишь небольшая нерегулярная дезориентация этих блоков. Размер блоков мозаики предполагается малым (порядка 10 см). В таких блоках эффектом поглощения и многократного отражения можно пренебречь. В общем случае полагают, что имеются распределение блоков по размерам и разброс углов дезориентации.  [c.227]

Рентгеновский анализ служит для изучения кристаллической структуры металлов. Этот метод основан на дифракции рентгеновских лучей рядами атомов кристаллической решетки. Рентгеновские лучи представляют собой электромагиитиые волны с длиной волны 0,0005—0,2 нм. Благодаря малой длине волны эти лучи возбуждают электроны атомов или ионов, находящихся в узлах кристаллической решетки. Поэтому атомы пионы сами становятся источниками электромагнитных колебаний. Лучи, рассеянные отдельными атомами или ионами, взаимодействуют (интерферируют) между собой. Вследствие упорядоченного расположения атомов в кристалле интерференция рассеянного излучения происходит таким образом, что в одних направлениях колебания усиливаются, в других ослабляются и гасятся. Возникающая интерференционная картина может быть истолкована как отражение лучей от отдельных кристаллографических плоскостей, подчиняющееся уравнению Вульфа—Брегга.  [c.50]

В настоящее время установлено, что все вещества, активные в аморфном состоянии (расплавленные или растворенные), активны и в виде кристаллов, хотя постоянная вращения для кристаллических форм может сильно отличаться от ее величины для аморфных наоборот, существует ряд веществ, неактивных в аморфном виде и вращающих в кристаллическом состоянии. Таким образом, оптическая активность может определяться как строением молекулы, так и расположением молекул в кристаллической решетке. Действительно, исследование соответствующих кристаллов (кварц, хлорноватистокислый натрий) при помощи рентгеновских лучей показывает особенности структуры, позволяющие истолковать. их оптическую активность.  [c.614]

Поскольку рассеяние тепловых нейтронов вообще не зависит явно от атомного номера исследуемого вещества, то с помощью дифракции нейтронов легко выявляется различие атомов с близкими. Z (например, при исследовании упорядочения атомов Fe и Со в системе Fe — Со), что трудно сделать рентгенографически и электронографически. При использовании дифракции нейтронов возможно изучение изотопических (часто рассеивающие способности изотопов одного и того же элемента значительно различаются) и спиновых различий атомов, входящих в решетку, причем такие различия не замечают ни рентгеновские лучи, ни электроны. В то же время при дифракции нейтронов могут оказаться неразличимыми (имеющими приблизительно равную амплитуду рассеяния) совершенно разные атомы. Так как легкие вещества рассеивают нейтроны также эффективно, как и тяжелые, то с помощью нейтронографии успешно проводят изучение кристаллической структуры веществ, в состав которых входят одновременно атомы легких и тяжелых элементов (атомы водорода в гидриде циркония, углерода в аустените), а также структур из легких элементов (льда, гидрида натрия, дейтерита натрия, графита). Такие структуры нельзя исследовать с помощью рентгеновских лучей и затруднительно с помощью электронов нз-за незначительного рассеяния их легкими элементами.  [c.37]

Прямые методы определения структуры кристаллов ведут свое начало от открытия Лауэ, Фридрихсом и Книппингом в 1912 г. интерференции рентгеновских лучей на кристаллической решетке. Рассмотрим основные моменты теории дифракции рентгеновских лучей на пространственной решетке кристалла. Некоторые из них уже были приведены в 3 гл. 1. Вкратце они состоят в следующем. Пусть плоская поляризованная электромагнитная волна в момент времени t падает на свободный заряд в точке О. Тогда напряженность поля вторичной волны, создавае-  [c.182]


Изложенный выше подход полностью применим и для изучения аморфных полупроводников других классов. Так, например, для изучения структуры аморфных Se, Те и т. д., сначала строились по данным о рассеянии рентгеновских лучей кривые функции радиального распределения, а затем проводилось модельное построение этих кривых по различным возможным моделям размещения атомов селена и т. п. В качестве моделей использовались данные, основанные на структуре кристаллического селена, в которой обычно выделяют восьмичленные кольца и спиральные  [c.280]

Рентгенографические методы анализа широко используются для изучения структуры, состава и свойств различных материалов. Широкому распространению рентгенофафического анализа способствовали его объективность, универсальность, быстрота многих его методов, точность и возможность решения разнообразных задач, часто недоступных другим методам исследований. Вследствие высокой проникающей способности рентгеновских лучей для осуществления анализа не требуется создание вакуума. С помощью рентгенографического анализа исследуют качественный и количественный состав материалов (рентгенофазовый анализ), тонкую структуру кристаллических веществ - форму, размер и тип элементарной ячейки, симметрию кристалла, координаты атомов в пространстве, степень совершенства кристаллов и наличие в них микронапряжений, наличие и величину остаточных макронапряжений в материале, размер мозаичных блоков, тип твердых растворов, текстуру веп ес1в, плотность, коэффициент термического расширения, толидину покрытий и т.д.  [c.158]

Карашев Т., Тврминасов Ю. С. Рентгенографическое исследование искажении кристаллической структуры отожженного технического железа, подвергнутого испытанию на износ.— В ки. Применение рентгеновских лучей к исследованию материалов, выи. 29. Л., Ле-нингр. инж.-экои. ин-т, 1962.  [c.112]

За прошедшее после опытов М. Лауэ время определена структура нескольких тысяч кристаллических веществ благодаря усовершенствованиям, которые" внесли английские ученые отец и сын У. и Л. Брэгги в метод дифракции рентгеновских лучей. Еще будучи студентом Кембриджокого университета, Л. Брзгг развил теорию дифракции рентгеновских лучей, выведя так называемое уравнение Брэгга. Его отец У. Брэгг сконструировал рентгеновский спектрометр.  [c.25]

Скорость окисления чувствительна к различным, одновременно действующим факторам. Термомеханическая обра.ботка графита марки ГМЗ при 2800° С с различной деформацией, увеличивая совершенство кристаллической структуры и плотность, приводит к более высокой скорости окисления. Этот факт можно объяснить тем, что снижение объема пор не всегда сопровождается уменьшением их поверхности — она может даже увеличиться. Поры сжимаются, причем могут образовываться микротрещины. Измерение удельной поверхности пор методом малоуглового рассеяния рентгеновских лучей подтверждает сказанное. Замена в рецепте графита марки ГМЗ части кокса КНПС высокодисперсной сажен, хотя и ухудшает совершенство кристаллической структуры, уменьшает скорость окисления почти в 10 раз за счет перераспределения пор [59, с. 80].  [c.48]

Выпускаемый промышленностью графит — это разнообразные по структуре кристаллические частицы, скрепленные связующим. Технический графит получают прессованием и сильным нагревом твердых угле-родов типа нефтяного кокса, смешанного с каменноугольным пеком или какими-либо другими высокоуглеродными связующими (фенолформаль-дегидными смолами и др.). Графитизация проводится в электрических печах при температурах от 2800 до 3300 К. Исследования дифракции рентгеновских лучей показывают, что почти все происходящие на этой стадии изменения являются результатом повышения степени упорядоченности кристаллитов, присутствующих в обожженном состоянии, и что увеличения их размеров практически не происходит. В процессе графи-тизации обожженного и.зделия из нефтяного кокса удельное сопротивление материала уменьшается в 5 раз, теплопроводность повышается в 25 раз, коэффициент термического расширения уменьшается на 50%.  [c.168]

Особенность электронографического метода состоит в том, что электронный пучок рассеивается веществом приблизительно в I f раз сильнее, чем рентгеновские лучи, и проникновение электронов в вещество невелико в сравнении с рентгеновскими лучами. Максимальная толщина окисных пленок, поддающихся злектронографированию, при съемке на просвет, составляет около 100 нм. При съемке методом отражения (применяя касательный к поверхности пучок электронов) можно анализировать окисные пленки толщиной порядка 1 нм и даже обнаруживать наличие мономолекулярного окисного слоя, т.е. фиксировать переход от хемисорбции к окислению. Электронография позволяет изучать процесс зародышеобразования, а при электронномикроскопическом исследовании фольговых образцов — кристаллическую структуру неметаллических включений (микродифракция). Таким образом, чувствительность метода весьма высока, и основное достоинство его заключается в возможности исследования малых объемов вещества.  [c.22]

Применение качественного рентгеновского анализа к бокситу ограничено следующим. Интенсивность дифракционных линий вещества зависит не только от концентрации кристаллов и числа отражающих плоскостей, но и от упорядоченности кристаллической решетки у них. Кроме того, для отражения рентгеновских лучей необходима определенная минимальная величина когерентных областей решетки. Эта минимальная величина зависит от длины волны применяемого рентгеновского излучения и структуры соответствующего кристаллического вещества. Поэтому невозможно дать общее правило. По Глокеру, частицы с линейными размерами менее IО мкм уже показывают значительное расширение линий при одновременном ослаблении интенсивности.  [c.31]

Структура низкоразмерных объектов не может быть определена только на основе метода рентгеновской дифракции. Известно, что наноструктурные многокомпонентные пленки имеют очень широкие дифракционные максимумы низкой интенсивности, что обычно объясняется аморфным состоянием вещества, хотя кристаллическая природа наноструктурных пленок может быть подтверждена другими методами. Поэтому для характеристики низкоразмерных объектов рекомендуется использование комбинированного подхода с применением различных методов, таких как рентгеновская фотоэлектронная спектроскопия, Рамановская спектроскопия, расширенные измерения поглощения рентгеновских лучей тонкой структурой (EXAFS), электронная микроскопия высокого разрешения и спектроскопия энергетических потерь электронов.  [c.480]

Структуру пленки изучали [37] с помощью специально разработанного метода скользящего пучка рентгеновских лучей. Луч направляли к поверхности под малым углом (не более 1°), что позволяло исследовать поверхностные слои толщиной 0,1—0,01 мкм. Исследования показали, что верхний слой пленки имеет значительные структурные изменения по сравнению с нижележащими слоями. З а критерий структурных изменений принимали истинную (физическую) ширину линий на рентгенограммах р, которая для чистых металлов и равновесных твердых растворов является результирующей средней величины блоков и дисперсий упругой деформации кристаллической решетки (микроискажеьий) и служит характеристикой плотности содержащихся в металле дислокаций.  [c.281]

Дифракция рентгеновских лучей в жидкостях отличается от их дифракции в кристаллах. На рентгенограмме жидкости, полученной фотографическим методом, при длительных экспозициях вместо резких интерференционных линий, характеризующих структуру кристаллической решетки, обнаруживаются широкие дифракционные полосы с размытыми краями. При фотомет-рировании рентгенограмм получаются кривые интенсивности с несколькими максимумами. Расчетным путем по кривым интенсивности определяют ближний порядок атомов в жидкости. В качестве примера на рис. 1 приведена кривая интенсивности ртути (В. И. Данилов,  [c.12]


Лишь В. Л. Брэгг, изучавший дифракцию рентгеновских лучей на структуре кристалла, продвинулся в этом направлении дальше. Он применил этот метод для группы предметов, для которых можно рассчитать разность фаз падающего и дифрагированного излучения. К этой группе относятся кристаллические решетки, обладающие симметрией. Разность фаз здесь равна нулк)  [c.16]

Новый метод представляет собой попытку обойти этот барьер, не преодолевая его в лоб, двухступенчатым процессом, в котором предмет регистрируется с помощью пучка электронов, а восстанавливается с помощью светового пучка. Общая идея такого процесса впервые возникла у автора под влиянием работы Брэгга Рентгеновская микроскопия [2] (см. также [3]). Однако метод Брэгга, в котором кристаллическая решетка восстанавливается с помощью процесса дифракции на дифракционной картине, полученной в рентгеновских лучах, может быть применен лишь к одному определенному классу периодических структур. Обычно это связывают с тем, что дифракционные картины содержат информацию только об интенсивностях волны и не содержат информации о фазах. Но эта формулировка не вполне удачна, так как она сразу же наводит на мысль, что раз фазы ненаблюдаемы в случае применения этого метода, то они не-наблюдаемы всегда. В самом деле, при анализе обычных дифракционных картин нельзя установить не только ненаблюдаемую часть фазы, но также и ту ее часть, которая обусловлена геометрическими и оптическими свойствами предмета и в принципе могла бы быть определена путем сравнения фаз рассматриваемой волны и стандартной опорной волны. Именно эти рассуждения привели меня в конце концов к новому методу.  [c.219]

Карашев Т. М., Терминасов Ю. С. Рентгенографическое исследование искажений кристаллической структуры отожженного технического железа, подвергнутого испытанию на износ. — В кн. Применение рентгеновских лучей к исследованию материалов. Л. Ленингр. инж.-экон. ин-т, 1962, вып. 29, с. 20.  [c.205]

Под эпитаксиальным ростом кристаллов понимают ориентированное срастание различных кристаллов из раствора, пара или расплава. Осаждение может происходить также электролитическим путем или посредством реакции кристаллической подложки с окружающей средой, например, при ориентированном образовании окислов. При этом кристаллы примеси (так называемые депозитные кристаллы), выделившиеся на инородной поверхности подложки (грани основного кристалла, грани подкладки), могут формироваться изолированно, так что ориентацию можно наблюдать микроскопическими методами (рис. 13.22). Кристаллическая фаза примеси может также образовать единое и ориентированное покрытие, монокристальную структуру которого можно доказать дифракцией электронов или рентгеновских лучей.  [c.336]

Определение структуры металлов и типа кристаллической решетки при помощи рентгеновских лучей основано на диффракции (отражении) рентгеновских лучей рядами атомов кристаллической решетки. Зная длину волны рентгеновых лучей, можно определить расстояние между рядами атомов и расположение их в пространстве. Установление атомной структуры металлов и сплавов весьма существенно для понимания физической природы явлений, происходящих при изменении состояния металла в процессе его обработки.  [c.109]

Метод обратной съемки является разновидностью метода Дебая—Шеррера. Принцип его заключается в том, что источник излучения и пленка представляют собой практически одно целое. Вследствие высокой чувствительности съемки в отраженном излучении этот метод особенно пригоден для определения малейших изменений размеров кристаллической решетки образца. В соответствии с этим отраженное излучение прежде всего применяется для определения фазового состава твердых растворов, а также упругих напряжений. Преимуществом этого метода является то, что рефлексы и 2 наблюдаются раздельно (расщепление ван-Аркеля) и таким же образом можно проводить их измерения. Недостаток метода заключается в том, что из-за незначительной проникающей способности рентгеновских лучей может быть исследована лишь структура поверхности. Чтобы устранить возможные повреждения поверхности в результате механической обработки, ее перед началом съемки следует слегка протравить. На практике нашли применение две разновидности этого метода плоской пленки по Заксу и Вертсу и конусной пленки по Реглеру. Наиболее широко распространенным является метод плоской пленки, поэтому более подробно рассмотрим лишь этот метод.  [c.152]

Рентгеновские методы являются одними из основных в изучении тонкой структуры деформированных материалов, так как дают достаточно подробные дополнительные данные к прямым методам исследования, использующим, например, электронную и оптическую микроскопию. Преимущество этих методов в том, что материалы и изделия можно исследовать без разрушения и непосредственного контакта, не останавливая производства, а это обеспечивает создание системы неразрушающего контроля дефектной структуры кристаллических твердых тел, находящихся в рабочем состоянии. Для использования интерпретации экспериментальных результатов требуются детальные выражения, описывающие зависимость особенностей распределения интенсивности на дифрактограммах от параметров дислокационной структуры. Часть этих данных содержится в весьма обширной литературе по кинематическому приближению статистической теории рассеяния рентгеновских лучей деформированными кристаллами [3—58]. В настоящей главе в ряде случаев с необходимой подробностью приведены функциональные зависимости и численные значения коэффициентов, определяющих связь экспериментальных данных с параметрами дефектной структуры кристалла. Кроме того, приведены новые результаты по теории рассеяния рентгеновских лучей сильно искаженными приповерхностными слоями и предсказаны рентгенодифракционные эффекты в кристаллах, которые содержат структуры, характерные для развитой пластической деформации материала.  [c.226]


Смотреть страницы где упоминается термин Кристаллическая структура рентгеновских лучей : [c.44]    [c.350]    [c.800]    [c.174]    [c.281]    [c.7]    [c.30]    [c.190]    [c.57]    [c.101]    [c.311]    [c.229]    [c.244]   
Физика твердого тела Т.2 (0) -- [ c.104 ]

Физика твердого тела Т.1 (0) -- [ c.104 ]



ПОИСК



411—416 — Структура кристаллическая

Кристаллические

Определение обратной решетки 96 Обратная решетка как решетка Брав 97 Решетка, обратная к обратной 97 Важные примеры 98 Объем элементарной ячейки обратной решетки 98 Первая зона Бриллюэна 99 Атомные плоскости Индексы Миллера атомных плоскостей Некоторые правила обозначения направлений Задачи Определение кристаллических структур с помощью дифракции рентгеновских лучей

Рентгеновские лучи

Х-лучи



© 2025 Mash-xxl.info Реклама на сайте