Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Земля межпланетные

С. б. применяются в сочетании с буферными аккумуляторами для обеспечения электроэнергией переносных радиостанций, искусственных спутников Земли, межпланетных кораблей.  [c.570]

Ракетоносители, в чью функцию входит выведение определенного полезного груза на траекторию вокруг земли ("ракетоносители спутников") или на траекторию, попадающую в поле притяжения другого небесного тела, нежели Земля ("межпланетные ракетоносители"). Такие ракетоносители придают полезному грузу конечную скорость свыше 7000 м/сек в конце активного полета.  [c.68]


Не имеет существенного значения, в какой именно точке пересекается аппаратом граница сферы действия Земли. Межпланетные расстояния так велики, что по сравнению с ними мы можем пренебречь разницей между расстояниями от Солнца всех возможных точек пересечения и принять, что начальная точка гелиоцентрической траектории (совпадающая сточкой пересечения) находится на таком же расстоянии от Солнца, как и Земля.  [c.309]

Межпланетное М. п.— это гл. обр. поле солнечного ветра (непрерывно расширяющейся плазмы солн. короны). Вблизи орбиты Земли межпланетное поле 10 —10 Э. Силовые линии регулярного межпланетного М. п. имеют вид идущих от Солнца раскручивающихся спиралей (их форма обусловлена сложением радиального движения плазмы и вращения Солнца). М. п. межпланетной плазмы имеет секторную структуру в одних секторах оно направлено от Солнца, в других — к Солнцу. Регулярность межпланетного М. п. может нарушаться из-за развития разл. видов плазменной неустойчивости, прохождения ударных волн и распространения потоков быстрых ч-ц, рождённых солн. вспышками.  [c.370]

Рассмотренные данные измерений являются иллюстрацией применения типичных методов и основой для обобщений, которые будут изложены позднее. В других исследованиях использованы электростатические [37] и емкостные [142, 546] зонды. Применялись также методы, основанные на регистрации рассеяния света [227, 843]. Микрофонный метод счета частиц [741] был использован при исследовании частиц межпланетной пыли вблизи Земли [529].  [c.197]

Скорость, необходимая для освобождения межпланетного корабля от совместных притяжений Земли и Солнца, будет больше 2g R и при определенном направлении равна около 16,7 км/с эту скорость называют третьей космической скоростью,  [c.254]

Труды И. В. Мещерского и К. Э. Циолковского лежат в основе теории движения современных многоступенчатых ракет, позволяющих запускать искусственные спутники Земли, космические корабли-спутники, посылать автоматические межпланетные станции к Луне и в сторону Венеры.  [c.6]

Потоки ГКИ в околоземном космическом пространстве меньше, чем в межпланетном пространстве. Это обусловлено экранирующим действием Земли и геомагнитным эффектом. Экранирующее влияние Земли уменьшает поток ГКИ примерно в 2 раза. Геомагнитное поле уменьшает поток ГКИ вблизи Земли до 10 раз.  [c.267]

Полеты космических кораблей с космонавтами на борту, автоматических межпланетных станций и искусственных спутников Земли используются как для научных исследований в околоземном и межпланетном пространстве, так и для решения практических задач народного хозяйства.  [c.43]

Земли, а также при рассмотрении проблем межпланетных сообщений. Рассматривая эту задачу, мы, как и при решении задачи 79, не будем учитывать сопротивление воздуха и будем считать Землю неподвижной.  [c.673]


Циолковский выдвинул идею создания многоступенчатых ракет, или ракетных поездов . Если скорость всех ступеней увеличивается на одну и ту же величину V, а число ступеней п, то суммарная скорость ракеты при выходе ее на пассивный участок траектории, где двигатели выключаются, VE = nv. Предположим, что скорость истечения газов из сопла ракеты составляет 3—4 км/с, тогда трех ступеней оказывается достаточно для запуска искусственных спутников Земли, а четырех — для запуска межпланетных кораблей.  [c.111]

Межпланетная среда. Параметры солнечного ветра (рис. 45.15) вблизи орбиты Земли [3, 18] скорость 400—700 км/с температура 5-10 —5-10= К магнитная индукция 10- —10 Тл (рис. 45.16) плотность 1 —10 см поток массы 10"—10 г/с поток кинетической энергии 10 Вт.  [c.1205]

Магнитные поля Земли и межпланетного пространства в ряде случаев оказывают заметное влияние на первичное излучение. Влияние магнитного поля Земли сводится к следующему.  [c.639]

В 1932 г. в Москве была издана книга Цандера Проблемы полета при помощи реактивных аппаратов , содержащая точную и строгую теорию эллиптических траекторий полета ракет в поле тяготения Земли и достаточно простые формулы для расчета основных элементов таких траекторий. По-видимому, Цандер открыл оптимальные эллиптические траектории межпланетных перелетов независимо от В. Гомана, и поэтому более справедливо называть их траекториями Цандера — Гомана. Составленные Цандером таблицы для семейств эллиптических траекторий мало отличаются от современных имеющиеся в них отличия обусловлены последующим уточнением исходных данных.  [c.415]

Комплекс основной аппаратуры станции состоял из приборов для исследования магнитных полей Земли и Луны, поясов радиации вокруг Земли, космического излучения, газовой компоненты межпланетного вещества и распределения метеорных частиц. Для связи с Землей использовались передатчики, работавшие на частотах в диапазоне от 19,993 до 183,6 мгц. В корпусе станции были помещены вымпелы с изображением Государственного герба СССР и надписью СССР. Сентябрь. 1959 . Общий вес корпуса станции, аппаратуры и источников энергопитания был равен 390,2 кг.  [c.430]

Постепенно, шаг за шагом раскрывая неизведанные области Вселенной, космические исследования имеют огромное познавательное значение, обогащая новыми знаниями астрономию и космологию, физику, геофизику и биологию, определяя переход от гипотез, основанных на наземных наблюдениях, к непосредственному экспериментальному изучению околоземного и межпланетного пространств. Исследования, выполняемые с помощью искусственных спутников Земли, приобретают все большее практическое значение для прогнозирования погоды, выполнения геодезических съемок труднодоступных земных районов, улучшения навигации и осуществления глобальной радиосвязи. Решение инженерных задач, связанных с проектированием и изготовлением средств ракетно-космической техники, оказывает существенное стимулирующее воздействие на темпы технического прогресса  [c.452]

При измерениях магнитного поля Земли, небесных тел и межпланетного пространства применялась единица напряженности магнитного поля гамма (7) 17 = = 10 Э. Соответственно 1 А/м = 1,26 10 7.  [c.270]

Решение сложнейших задач, связанных с запуском спутников и космических ракет, управлением их полетом и в случае необходимости возвращением межпланетных кораблей на Землю, было невозможно без самого близкого участия в этом деле радиоэлектроники.  [c.415]

Затупленная форма спускаемых аппаратов, первоначально выбранная из-за меньшего нагрева аппаратов подобной формы при баллистическом входе в атмосферу, теперь детально исследуется применительно к полетам с подъемной силой, возникающей при движении аппарата под углом атаки. Особенно выгоден планирующий спуск при скоростях входа, больших или равных второй космической. Такие скорости входа являются следствием сложения скорости полета по межпланетной траектории со скоростью свободного падения на Землю и могут варьироваться для рассматриваемых траекторий от 12 до 21 км/с. При возвращении от Марса с облетом Венеры скорость входа составляет 16,3 км/с.  [c.285]

Следует отметить, что хотя тяга ядерных ракетных двигателей невелика по сравнению с тягой химических ракетных двигателей, ядерный двигатель может работать в течение гораздо большего (на много порядков) времени, чем ракетный двигатель с химическим топливом. Поэтому ЯРД является весьма перспективным типом двигателя для управляемых межпланетных космических кораблей. Для старта такого корабля с Земли, по-видимому, должны быть использованы двигатели с химическим топливом, а ЯРД используется для полета за пределами земного притяжения.  [c.355]


Управляемая с Земли межпланетная станция прошла вблизи Луны, заглянув на ее обратн)то сторону, которую никогда не видел человек. Специальная система ориентации поставила фотообъектив в нужное положение, и в течение 40 минут космический автофотокорреспондент вел съемку Луны. Автоматы проявили пленку и по команде с Земли передали изображение лунной поверхности через сотни тысяч километров. Полеты советских ракет открыли новые широчайшие перспективы освоения космоса они вечно останутся немеркнущей вехой в истории мировой науки.  [c.264]

С 1950-х гг. космическая программа США включала в себя создание и использование целого ряда искусственных спут1иков Земли, межпланетных станций, оснащенных метеорологическсй, навигационной, геодезической аппаратурой, в том числе и воешого назначения.  [c.67]

Различные организации в Советском Союзе и за рубежом занимаются регистрацией запусков и орбит космических объектов. По существующим правилам о запусках искусственных спутников Земли, межпланетных автоматических станций, космических кораблей и любых других космических объектов, а также о прекращении существования их на орбитах каждая страна представляет информацию в Организацию Объединенных Наций в стандартной форме. Все регистрирующиеся объекты могут быть разделены на полезные нагрузки и вспомогательные объекты . Вторые представляют собой последние ступени ракет-носителей, части головных обтекателей ракет, объекты, остающиеся на вспомогательных орбитах (переходных эллиптических и низких круговых), отделившиеся отсеки лунных кораблей, различные детали и т. п. (Только после взрыва последней ступени одной из ракет США было зарегистрировано 450 орбит осколков по неизвестной причине развалился на части спутник Пагеос .) Обычно учитываются только объекты, движущиеся или двигавшиеся когда-то по орбитам, но не указываются отдельно ни полезные нагрузки (даже действующие), ни обломки на поверхностях Луны и планет.  [c.150]

Скорость Vi=V2gR называется параболической или второй космической скоростью. Если считать R=R =6378 км и g=go=9,82 м/с то получим V2 , 2 км/с. Таким образом, при начальной скорости Uo n,2 км/с тело, брошенное с поверхности Земли под любым углом а к горизонтальной плоскости, будет двигаться по параболе или гиперболе (при а=90° — по прямой), неограниченно удаляясь от Земли. Достижение скоростей такого порядка необходимо для межпланетных сообщений . При скорости, меньшей второй космической, тело или упадет обратно на Землю, или станет искусственным спутником Земли.  [c.254]

Геометрическое место положений движущейся точки в рассматриваемой системе отсчета называется траекторией. По виду траектории движение точки делится на прямолинейное и криволинейное. Траектория точки может быть определена и задана заранее. Так, например, траектории искусственных спутников Земли и межпланетных станций вычисляют заранее, или, если принять движущиеся по городу автобусы за материальные точки, то их траектории (маршруты) также известны. В подобных случаях положение точки в каждый данный момент времени I определяется расстоянием (дуговой координатой) 5, т. е. длиной участка траектарии, отсчитанной от некоторой ее неподвижной точки, принятой за начало отсчета. Отсчет расстояний от начала траектории можно вести в обе стороны, поэтому отсчет в одну какую-либо сторону условно принимают за положительный, а в противоположную — за отрицательный, т. е. расстояние 5 — величина алгебраическая, она может быть положительной (5>0) или отрицательной (5< 0).  [c.82]

Великие достижения последних лет — внедрение автоматизации в различные области техники, создание искусственных спутников Земли, запуск космических ракет и межпланетных лабораторий — об -славливают дальнейшее развитие теоретической механики, науки, созданной в результате усилий большого числа гениальных ученых и выдающихся инженеров.  [c.9]

Задача 1403. По одному из проектов, межпланетный пассажирский корабль с атомным двигателем стартует вертикально. Считая конечную массу корабля равной 10 т, скорость истечения газов равной 100 км1еек, найти начальную массу корабля, если в целях безопасности пассажиров его ускорение во все время старта поддерживается равным 12,8 м/еек а конечная скорость равна 12,8 км1сек. Учесть изменение силы тяжести с изменением высоты (радиус Земли равен 6400 км). Сопротивлением воздуха пренебречь.  [c.512]

В целях уменьшения веса специальную защиту можно создавать только для одного из отсеков корабля, используя этот отсек в качестве радиационного убежища на время протонных солнечных вспыщек и прохождения радиационного пояса Земли. Однако даже при ограниченных размерах этого убежища (диаметр 2—3 м) для снижения уровня облучения при длительном межпланетном полете до 5 бэр в год, как это, например, принимается в расчетах защиты наземных ядернотехнических установок, потребовалась бы защита весом более 100 Т. Это вызывает необходимость тщательного обоснования критерия радиационной безопасности при длительных космических полетах. Расчеты показывают, что при длительности полета 1—2 года и толщине защиты отсека-убежища 30—60 г/см неопределенность в дозе - 10% приводит к неопределенности в весе защиты 1,5 Т [22]. Такая высокая весовая значимость величины дозы за защитой космического корабля обусловливает необходимость детального изучения радиационной обстановки на трассах космических полетов, исследования взаимодействий космических излучений с веществом защиты и ткани, а также обоснования критериев радиационной безопасности.  [c.292]

Орбиты метеоритов. Метеориты — это малые тела, движущиеся в межпланетном пространстве по замкнутым орбитам вокруг Солнца. Иногда они сталкиваются с атмосферой Земли, образуя метеоры, видимые на высоте до 10 см над земной поверхностью и имеющие скорость от 1,1 10 до 7,5 X X 10 см/с. Орбита метеорита остается замкнутой, если его скорость в данной точке меньше, чем скорость Wmax, необходимая для преодоления солнечного притяжения, когда метеорит находится на расстоянии R от Солнца Отах =  [c.296]

Значения первой и второй космических скоростей были вычислены без учета сопротивления атмосферы. Если же его учесть, то для запуска ракеты ио круговой или иараболическоп траектории потребуется скорость, заметно превышающая эти значения. Иаиример, для запуска но параболической траектории с учето,ч сил сопротивления среды, как показывает расчет, ракета должна иметь скорость не менее 13—14 км/с. Сопротивление атмосферы значительно лишь на начально. участке траектории, т. е. на высотах примерно до 300 км над поверхностью Земли. Кроме того, с увеличением высоты А над земной поверхностью значение Vк2 уменьшается. Поэтому старт космического корабля на межпланетную траекторию выгоднее производить не с земного космодрома, а с искусственного спутника Земли, выведенного предварительно на круговую орбиту или близкую к ней. Так как ири этом космический корабль, находящийся на спутнике, уже имеет круговую скорость, то для выхода его из сферы действия Земли ему нужно сообщить лишь скорость, равную разности иараболической и круговой скоростей на данной высоте.  [c.120]


Основная доля падающих на границу атмосферы КЛ имеет галактическое происхождение (галактические КЛ). Источниками этих частиц являются сверхновые и их остатки (включая нейтронные звезды) [1, 2]. Часть КЛ (в основном с энергиями 10 —10 эВ) приходит к Земле от Солнца. Солнечные КЛ ускоряются во время сильных хромосферных вспышек и других активных процессов на Солнце [3]. Частицы самых высоких наблюдаемых анергий (Я> 10 - -10 эВ), возможно, имеют внегалактическое происхождение. Они ускоряются в активных галактиках [2]. Источником электронов с энергиями <3-10 эВ в межпланетной среде является магнитосфера Юпитера [4]. При энергиях 10 —10 эВ обнаружена так называемая аномальная ядерная компонента КЛ. Эти частицы ускоряются во внешних областях гелиосферы — на внешних границах области, занятой солнечным ветром [5].  [c.1173]

I — межпланетное магнитное поле 2 — плазменная мантия Z— плазменный слой 4 — ток поперек хвоста 5 — конвекция плазмы 6 — кольцевой ток 7 — магнитопауза S — ток на магнитопаузе 9—плазмосфера (вращается вместе с Землей) касп  [c.1207]

Если отвлечься от искажающего влияния магнитных полей Земли и межпланетного пространства, то в месте нахождения Солнечной системы первичное космическое излучение изотропно по направлению и постоянно во времени. Интенсивность его равняется 2—4 частиц/(см -с). Пространственная и временная изотропия являются, по-видимому, результатом длительного блуждания частиц, в процессе которого стерлась всякая пространственная и временная выделенность источников космических частиц по отношению к Земле.  [c.635]

Задачи эти крайне сложны и многообразны. Достаточно указать, например, что для освоения околосолнечного пространства могут использоваться летательные аппараты, существенно различные по выполняемым функциям и по конструктивному исполнению. К числу их основных классов относятся ракеты-зонды, орбитальные самолеты, взлетающие с земной поверхности и совершающие полеты по орбитам за пределами земной атмосферы, искусственные спутники Земли без тяговых двигателей и сателлоиды (искусственные спутники, снабженные тяговыми двигателями), межпланетные автоматические станции, оборудованные регистрирующими измерительными приборами и передающие накапливаемую информацию наземным станциям связи, космические корабли, используемые для межпланетных сообщений, и космические лаборатории, предназначенные для длительного пребывания в космо-се научно-исследовательского персонала. Более того отдельные классы космических летательных аппаратов подразделяются на большое количество групп применительно к различным аспектам их использования. Так, искусственные спутники Земли выполняются в различных модификациях для проведения научных исследований, для удовлетворения нужд дальней радиосвязи и телевидения, навигации и метеорологии и для осуществления ряда других практических задач.  [c.408]

Еще студентом он увлекся астрономией и проблемами межпланетных полетов. К концу 1921 г. им была завершена разработка проекта межпланетного корабля-аэроплана, сочетавшего конструктивные особенности самолета и ракеты. Снабженный авиационной винтомоторной установкой высокого давления и реактивной двигательной установкой ( ракетным мотором ), этот корабль должен был взлетать с Земли и совершать полет в плотных слоях атмосферы с помощью авиационного двигателя, а затем на высоте около 28 км — по достижении расчетной скорости 350—АЪО Mj en— переходить на ракетный полет, причем части самолета, изготовленные из сплавов  [c.414]

Уделяя серьезное внимание развитию ракетных и самолетных двигательных систем, Цандер разработал конструкции и провел испытания жидкостных реактивных двигателей ОР-2 и 10 с применением двигателя 10 25 ноября 1933 г. был осуществлен запуск второй советской ракеты ГИРД-Х (см. стр. 419). Столь же большое внимание уделялось Цандером теоретическим разработкам. Так, в 1924—1927 гг. он выполнил два исследования — Полеты на другие планеты (теория межпланетных путешествий) и Расчет полета межпланетного корабля в атмосфере Земли (спуск) . Опубликованные посмертно в 1961 г., они наряду с рассмотрением других проблем содержат определение величины и направления добавочной скорости, которую нужно сообщить межпланетному кораблю, движущемуся вокруг Земли по орбите искусственного спутника, чтобы достигнуть планеты Марс. В этих же работах впервые была поставлена и проанализирована задача корректирования траектории центра масс космического корабля при приближении к планете, являющейся целью полета, и даны таблицы (расписания) полетов с Земли на Марс, не утратившие своего значения до нашего времени [8].  [c.415]

Корабль Пионер-10 был запущен в начале марта 1972 г. трехступенчатой ракетой Атлас-Центавр (ATLAS SLV-3 / EN-TAUR/TF-364-4) с целью получения научных данных об орбите Марса, в особенности по свойствам межпланетной среды и природе пояса астероидов, исследования Юпитера и его окружения и отработки техники продолжительных полетов к внешним планетам. Юпитер удален от Земли на 5,2 астрономических единиц космический корабль прибыл в район Юпитера в декабре 1973 г. Продолжительность полета Пионера-10 рассчитана на срок более двух лет [10].  [c.113]

Только на основе применения новейших методов радиоприема советским ученым удалось осуществить, например, прием сигналов от автоматической межпланетной станции, посланной в район Венеры (1961 г.), мощность которых у Земли измерялась ничтожно малыми величинами, имеющими порядок вт1м -.  [c.388]

Вооруженный машинами человек дерзновенно переделывает природу, все полнее использует ее богатства. При помот щи машин он вторгся в воздушный океан, преодоле.а земное притяжение и готовится совершать межпланетные путешествия, опускается на дно океанов, проникает глубоко в недра земли и направляет энергию атомного ядра на удовлетворение нужд человечества.  [c.5]

Р. X. Годдард (США) начал свои исследования в области ракетно-космической техники в 1906 г. В его научном дневнике под названием Перемещение в межпланетном пространстве [6, с. XIII] в 1906—1908 гг. были рассмотрены различные источники анергии и типы движителей солнечные зеркала высокоскоростной поток электрически заряженных частиц (по-видимому, это было первое рассмотрение теории электрических реактивных двигателей) тепло, выделяющееся при радиоактивном распаде (провозвестник атомного двигателя) и, наконец непрерывное горение водорода и кислорода с отбрасыванием газов (т. е., по существу, жидкостный ракетный двигатель) [6, с. 693]. Кроме того, в те же годы он изучал некоторые другие аспекты космического полета противометеорную защиту, старт ракеты (в частности, высотный — с помощью аэростатов), посадку с применением крыла на планету, имеющую атмосферу, или на Землю при возвращении, фотографирование Луны при облете ее ракетой и различные вопросы практики космических полетов и конструкции аппаратов. Некоторые результаты исследований Годдард включил в статью О возможности перемещения в межпланетном пространстве (1907 г.) [6, с. 81 —87], которая была опубликована лишь в 1970 г. В статье делается  [c.438]

ЗЕМНОЙ МАГНЕТИЗМ (геомагнетизм) — раздел геофизики, иаучатощий магнитное поле Земли МПЗ), его распределение иа земной поворхиости, пространств, структуру магнитосферу Земли, раднац. пояса), его вяапмодействие с межпланетным маги, полем, вопросы его происхождения.  [c.81]


Смотреть страницы где упоминается термин Земля межпланетные : [c.288]    [c.384]    [c.429]    [c.434]    [c.434]    [c.434]    [c.451]    [c.140]    [c.81]    [c.331]   
Основы механики космического полета (1990) -- [ c.286 , c.287 ]



ПОИСК



Земли

Особенности спуска на поверхность Земли с лунных и межпланетных траекторий возвращения



© 2025 Mash-xxl.info Реклама на сайте