Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Легирование лазерное

Помимо того есть еще и другие направления исполь-Бования лазерного луча. К ним относятся лазерная закалка, лазерное остекловывание, поверхностное упрочение металлов,. маркировка изделий, скрайбирование, ла-верное легирование, лазерная металлургия.  [c.70]

Поверхностное легирование лазерным излучением имеет ряд преимуществ по сравнению с ранее известными способами. Это экономия легирующего материала, минимальная последующая обработка и отсутствие необходимости термической обработки. Лазерное легирование весьма нетребовательно к геометрии поверхности, характеризуется высокой производительностью и несложным контролем. Важная его особенность - хорошая воспроизводимость геометрических параметров и физико-механических свойств обработанной поверхности.  [c.365]


Для повышения твердости поверхности применяют также лазерное легирование. Легирующие присадки в виде порошка предварительно наносят на обрабатываемую поверхность. При облучении лазером поверхности заготовки происходит плавление и взаимное перемешивание порошка и материала заготовки в пределах тонкого поверхностного слоя.  [c.298]

Лазерная закалка обеспечивает высокую твердость до 64 HR не требует легирования, позволяет местное упрочнение, автоматизацию, не вызывает коробления. Но процесс этот пока медленный.  [c.162]

Воздействие высокоэнергетического когерентного излучения на материалы как технологический метод характеризуется широкими потенциальными возможностями обработки металлов и сплавов. Особенностями метода лазерной обработки являются локальность и высокая концентрация подводимой энергии. Используемый диапазон плотностей мощности лазерного пучка находится в пределах Wp = 10 -10 Вт/см . Разработаны перспективные технологии обработки поверхности материалов, позволяющие осуществлять плавление, термо-упрочнение и легирование приповерхностных слоев конструкционных и инструментальных материалов. Варьируя технологическими параметрами, можно обеспечить изменение скоростей нагрева и охлаждения, размеров зон обработки, формировать структуру материалов и получать модифицированные слои с требуемыми свойствами.  [c.255]

Лазерное легирование заключается в насыщении материала легирующими элементами посредством диффузии предварительно нанесенного слоя под воздействием лазерного пучка. При этом достигается высокая концентрация легирующих компонентов в поверхностных слоях материалов. Лазерная наплавка состоит в расплавлении нанесенного на изношенную поверхность изделия слоя материала под воздействием излучения высокой плотности мощности. За счет этого достигается проплавление материала нанесенного слоя и основы, что способствует повышению их адгезионной прочности.  [c.258]

В книге рассматриваются технологические процессы упрочнения материалов с помощью импульсного и непрерывного излучения лазеров различных типов. Приведены сведения об используемом для этих целей оборудовании, проанализированы процессы и явления, необходимые для понимания механизма упрочнения материалов в условиях лазерного облучения. Описаны различные схемы реализации процесса. Приведены примеры практического использования новой технологии локального упрочнения и легирования деталей машин н инструментов. Предназначена для инженерно-технических работников, занимающихся вопросами разработки в внедрения прогрессивной технологии в производствО может быть полезна аспирантам н студентам машиностроительных и приборов строительных специальностей.  [c.4]


При воздействии лазерного излучения в результате перегрева расплава повышается предельная растворимость элементов в материале, а в процессе быстрого охлаждения фиксируются полученные высокотемпературные состояния. Это дает возможность получить сплавы с большим содержанием растворенного элемента, т. е. использовать лазерное излучение для локального легирования поверхности материалов различными элементами.  [c.13]

ВОЗМОЖНОСТИ ЛЕГИРОВАНИЯ МАТЕРИАЛОВ В УСЛОВИЯХ ЛАЗЕРНОГО ОБЛУЧЕНИЯ  [c.25]

Рис. 15. Влияние легирующего элемента на изменение микротвердости в зоне лазерного легирования. Рис. 15. <a href="/info/58162">Влияние легирующего элемента</a> на изменение микротвердости в зоне лазерного легирования.
Исследования показали, что механизм проникновения и распределения легирующих компонентов представляет собой сложный процесс, включающий как механическое перемешивание составных элементов под действием гидродинамических сил и температурных градиентов, так и диффузионное распространение с образованием твердого раствора. При таких кратковременных процессах, как импульсное воздействие лазерного излучения, в соответствии с классическими представлениями, диффузия не может играть существенной роли в механизме легирования. Однако в этом случае можно предположить действие специфического механизма диффузии при неравновесных условиях, когда металлы в области легирования находятся в состоянии перегретой жидкости. В этих условиях основная масса легирующего металла может распространяться в зоне воздействия лазерного излучения отдельными потоками под действием механических сил, а в результате диффузии часть вводимого элемента как бы рассасывается по всему объему зоны. Правомерность существования такого механизма подтверждается тем, что коэффициенты диффузии для жидких металлов на несколько порядков выше коэффициентов диффузии в твердой фазе.  [c.29]

Исследования показали, что процесс насыщения поверхности обрабатываемого материала легирующим элементом можно регулировать в довольно широких пределах, изменяя параметры режима обработки. В частности, режим легирования влияет на содержание легирующего элемента в матрице и глубину зоны легирования. Основными параметрами при этом являются длительность, энергия и форма импульса ОКГ, количество импульсов лазерного излучения, подаваемых в одну зону. Особенно наглядно это может быть продемонстрировано на примере легирования поверхности армко-же-  [c.30]

Рис. 16. Изменение микротвердости в зоне лазерного легирования по глубине Рис. 16. Изменение микротвердости в зоне лазерного легирования по глубине
Проведенные исследования также подтвердили возможность оценки расчетным путем результатов лазерного легирования. Так же, как и при упрочнении материалов излучением ОКГ, при лазерном  [c.31]

При исследовании процесса легирования материала в условиях лазерного облучения изучались различные способы предварительного нанесения слоя легирующего элемента на матрицу накатка фольги из легирующего материала, электролитическое осаждение легирующего материала, детонационное покрытие, плазменное напыление легирующих элементов, нанесение порошка или специальной обмазки и др. [16]. Наиболее значительным недостатком первого способа нанесения слоя легирующего элемента является высокое тепловое сопротивление между легирующим элементом и матрицей, препятствующее расплавлению матричного материала и приводящее к испарению слоя легирующего элемента. В меньшей мере этот недостаток присущ двум следующим указанным способам.  [c.32]


Одним из перспективных путей совершенствования процесса насыщения материала легирующими элементами является сочетание электроискрового легирования с лазерной обработкой. При этом в результате электроискрового легирования происходит предварительное нанесение слоя легирующего материала на поверхность матричного материала с частичным внедрением легирующих элементов в матрицу на небольшую глубину [28], а под действием импульсов лазерного излучения обеспечивается более равномерное распределение легирующих элементов в матрице и увеличение, примерно на порядок, глубины зоны легирования.  [c.32]

Образцы с нанесенным слоем легирующего элемента подвергались лазерному облучению при плотности мощности q 10 Вт/см . При таких режимах обработки в условиях моноимпульсного лазерного воздействия наблюдались довольно качественные зоны легирования, причем их глубина зависела от плотности излучения. Нанесенный электроискровым способом слой легирующего материала имеет идеальный контакт с матрицей, что обеспечивает высокое качество и стабильность процесса лазерного легирования.  [c.32]

Учитывая, что процесс лазерного легирования наиболее эффективно реализуется в жидкой фазе компонентов при их равномерном перемешивании, можно расчетным путем оценить максимальную концентрацию элемента в легируемой зоне. При этом предполагается, что контур расплавленной зоны при воздействии импульсного излучения представляет собой параболоид вращения с образующей, соответствующей изотерме плавления материала. Приняв обозначения Кг и соответственно для концентрации элемента в предварительно нанесенном слое и объема этого слоя, а также Кз и Уз соответственно для концентрации легирующего элемента в расплавленном объеме матрицы и объема расплавленного металла, запишем следующее уравнение  [c.33]

Рис. 18. Схема для расчета концентрации легирующего элемента в зоне лазерного легирования. Рис. 18. Схема для <a href="/info/395691">расчета концентрации</a> <a href="/info/1582">легирующего элемента</a> в зоне лазерного легирования.
С этой точки зрения особый интерес представляет проект комплексной производственной системы с широким использованием лазерного излучения для выполнения технологических процессов, который в настоящее время разрабатывается рядом фирм и университетов Японии [76]. Проектом предусмотрено наличие в системе лазерной станции, которая генерирует мощное лазерное излучение, направляемое по соответствующим каналам к различным рабочим местам, на которых оно используется для резки материала, прошивки отверстий, упрочнения, локального легирования материала, измерений и т. п. В системе предусмотрено использование лазеров мощностью до 20 кВт и выше. В указанном производственном комплексе сочетаются традиционные методы обработки с новейшими лазерными методами, широко используется вычислительная техника и различные автоматические устройства. Этот комплекс отличается от существующих типов предприятий высокой эффективностью, снижением удельного веса трудоемких операций, возможностью быстрого осуществления перестройки производственной системы на выпуск нового вида изделий, снижением себестоимости продукции. На рис. 32 показан эскиз основных элементов предлагаемой комплексной производственной системы с широким использованием лазерного излучения для технологических целей.  [c.53]

В ряде случаев из-за того, что упрочнение в результате структурных превращений является недостаточным для повышения эксплуатационных характеристик поверхности, целесообразно в процессе обработки вводить легирующие элементы. Для осуществления процесса лазерного легирования необходимо, чтобы температура металла на поверхности достигала значений, немного превышающих тем-  [c.116]

Как видно из рассмотренных примеров, эффективность лазерного упрочнения и легирования довольно высока. Тем не менее, в настоящее время таких примеров промышленного использования этих видов обработки еще немного. Это объясняется как новизной процесса, так и необходимостью проведения дальнейших исследований с целью создания надежного технологического оборудования.  [c.117]

Возможность достижения высоких значений мощности и плотности потока энергии делает лазерный луч уникальным инструментом и для проведения различных операций в термической технологии. Эксперименты показали, что лазерная резка и сварка, поверхностное термоупрочнение, плакирование и легирование позволяют не только экономить материалы, но и получать новые свойства обрабатываемого вещества, недостижимые с помощью традиционных термических технологий. Уже первые ре-  [c.9]

Осаждение на подложку может происходить из паров, плазмы или коллоидного раствора. При осаждении из паров металл испаряется в вакууме, в кислород- или азотсодержащей атмосфере и пары металла или образовавшегося соединения (оксида, нитрида) конденсируются на подложке. Размер кристаллитов в пленке можно регулировать изменением скорости испарения и температуры подложки. Чаще всего этим способом получают нанокристаллические пленки металлов [145, 146]. Пленка из оксида циркония, легированного оксидом иттрия, со средним размером кристаллитов 10—30 нм получена с помощью импульсного лазерного испарения металлов в пучке ионов кислорода и последующего осаждения оксидов на подложку с температурой 350—700 К [147].  [c.51]


ЛПЛ. Лазерное поверхностное легирование позволяет осуществлять локальную химикотермическую обработку при скоростном нагреве поверхности лазерным лучом. Диффундирующий элемент в виде порошка, составляющей пасты или гальванического покрытия наносится ка обрабатываемую поверхность детали или поступает из окружающей ее газовой среды.  [c.497]

Слои поверхностные — Лазерные методы модифицирования и легирования 157, 160, 161  [c.686]

Представляют интерес хорошие генерационные характеристики застеклованных концентрированных сред на КНФС (см. табл. 7.15) по сравнению с традиционными силикатными лазерными стеклами типа КГСС и близкими к ним. Дополнительной особенностью таких материалов, как НАБ и КНП (калиевый аналог ЛНП), является нецентросимметричность, открывающая дополнительные возможности их использования в нелинейной и интегральной оптике, что будет подробнее рассмотрено в 7.9. Возможность изоморфного встраивания в решетку кристаллов типа НАБ ионов хрома [111, И4], обеспечивающих эффективное поглощение излучения накачки н перенос ее на возбужденные ионы неодима, открывает, в частности, перспективы солнечной накачки и подчеркивает энергетические преимущества новых КЛС по сравнению с ранее известными легированными лазерными материалами.  [c.234]

Сейчас трудно назвать какой-либо раздел естественных наук, который в той или иной степени не касался бы явлений на границах раздела твердых фаз. Не говоря уже об электронике и каталитической химии, проблема поверхности остро интересует специалистов в области конструкционных материалов (порошковая металлургия), магнитологов (новые магнитные материалы), оптиков и радиофизиков (пленочные слоистые структуры). Даже специалисты в области ядер-ной физики вынуждены иметь дело с явлениями на поверхности (проблема второй стенки термоядерного реактора). Большая армия биологов, геофизиков и геохимиков интенсивно изучает сложные межфазные процессы в мембранах клеток, в пористых неорганических и органических веществах. Чрезвычайно большое значение имеют технические аспекты физики поверхности в электронной и космической технике, в таких современных технологиях, как молекулярная эпитаксия, ионное легирование, лазерная обработка материалов и др.  [c.8]

В последнее время широкую известность приобрели монокристаллы сапфира, легированные ионами титана Т1 + и ванадия У +, электронная конфигурация которых 1 5 2 5 2 р 3 5 3р 3с( . При такой электронной конфигурации образуется одно состояние Ю, которое расщепляется в кристаллическом поле решетки сапфира на два состояния и При переходах между уровнями этих состояний происходит генерация лазерного излучения. Особенностью активных сред с ионами титана и ванадия является возможность плавной регулировки (перестройки) частоты генерации лазера. При активации монокристаллов сапфира ионами титана перестройка осуществляется в пределах 0,68—0,93 мкм, а ионами ванадия — 0,59—0,62 мкм. Монокристаллы сапфира с различными примесями выращивают методами Вернейля, Чохральского и Багдасарова (см. главу третью).  [c.75]

Другим способом электронно-лучевого упрочнения металлов и сплавов, разработанным в последнее время [159, 160], является легирование материалов пучками релятивистских электронов. Преимущество данного способа обработки заключается в возможности легирования поверхностных слоев на большую глуб1шу, чем, например, при лазерном легировании. Толщина расплавленного слоя при воздействии электронов может достигать 1 мм [160]. Для легирования используются порошки карбидов состава ВдС, W , Ti , а также смеси типа В С Сг. Электронно-лучевое воздействие способствует полному растворению легируюп их фаз. При этом достигается равномерное распределение  [c.253]

Легированные стали. Структурные и фазовые превращения, происходящие под воздействием лазерного излучения, исследовались на сталях Р18, Р6М5, ХВГ, ШХ15.  [c.16]

Интересно проследить, как насыщение различными элементами влияет на изменение микротвердости в зоне лазерного легирования. Исследования проводились на чистом железе и стали ШХ15 при режимах, описанных выше (см. с. 27). В качестве легирующих элементов использовались чистые металлы N1, Мо, Т1, Та, Сг, V [14]. Было обнаружено существование четко локализованной зоны, от-  [c.28]

В отличие от результатов, полученных в процессе легирования поверхности железа, при проведении экспериментов на образцах из стали ШХ15 в области воздействия лазерного излучения наблюдается образование трех явно выраженных зон. Одна из этих зон (наибольшая по объему) является твердым раствором легирующего элемента на основе железа. Затем расположены две ЗТВ закалки и отпуска. Глубина зоны легирования также достигает 300—400 мкм. Н.а характеристики обработанной поверхности большое влияние оказывает выбор легирующего элемента. Так, при легировании молибденом и титаном наблюдается значительно большее увеличение микротвердости в зоне лазерного воздействия, чем при легировании ниобием.  [c.29]

В процессе исследований было обнаружено снижение эффективности лазерного легирования при использовании в качестве легиру-  [c.32]

Примерно такие же габаритные размеры имеет и лазерная установка фирмы Mitsubishi (Япония) мощностью 1 кВт, также предназначенная для упрочнения и легирования.  [c.49]

На рис. 94 показан выхлопной клапан автомобильного двигателя, рабочая поверхность которого была подвергнута лазерному легированию, что позволило значительно повысить его износостойкость, коррозионную стойкость и противоударную прочность [4].  [c.117]

Поскольку слой SiOj прозрачен в видимом диапазоне длин волн, то следующие импульсы поглощаются поверхностным слоем Si, в результате чего происходит его испарение с последующим повышением давления паров. Это приводит к микровзрыву с разрушением слоя SiOj и выбросом расплавленного Si, который оседает на А1 с образованием хорошего омического контакта. Количество лазерных импульсов определяет качество соединения слоя алюминия микронной толщины и сильно легированного слоя -Si. Если количество импульсов меньше четырех, то нужного соединения не получится, а если оно больше этой величины, лазерное излучение проникает в p-Si слой, производя его разрушение. Только четыре лазерных импульса позволили в данном случае получить хорошую стабильность и повторяемость на нескольких образцах. Так, в работе [205] сообщается, что все 100 выполненных соединений имели допустимое отклонение.  [c.175]

Значительные возможности повышения надежности узлов трения от-крьгоаются при использовании лазерных излучений для направленного изменения фрикционных свойств поверхностей трения.Посредством лазерной обработки осуществляется закалка поверхности, наплавка износостойких покрытий, легирование поверхностного слоя.  [c.22]

Упрочненный слой имеет высокую твердость и износостойкость. Твердость слоя, измеренная методом Виккерса на приборе ПМТ-3, составляет 1000—1400 НУ и зависит от материала электрода. Общий слой электроискрового упрочнения состоит из верхнего белого нетравящегося слоя и нижнего переходного диффузионного слоя с переменной концентрацией легирующих примесей и карбида, с сильно измененной исходной структурой, постепенно переходящей в структуру основного металла. В большинстве случаев нижний слой по глубине несколько больше верхнего. В связи с наличием ди( узионного слоя в структуре упрочненного металла возможно многослойное упрочнение, в том числе с образованием разнолегированных слоев. Последующее воздействие лазерного излучения улучшает свойства упрочненной поверхности, легированной электроискровым методом, и снижает степень ее шероховатости.  [c.275]


Синтетический, окрашенный в красный цвет прозрачный монокрнсталли-ческий оксид алюминия (легированный оксидом хрома в количестве 2—3 %) — рубин применяют для изготовления часовых камней, некоторых деталей точных приборов и т. п. Монокристал-лические стержни рубина применяют в лазерной технике. Возрос интерес к стабилизированному оксиду циркония, являющемуся перспективным материалом для изготовления деталей, предназначенных для работы при высоких температурах, в частности в адиабатных двигателях (плотность 5,6 т/м ,  [c.144]


Смотреть страницы где упоминается термин Легирование лазерное : [c.11]    [c.124]    [c.218]    [c.274]    [c.31]    [c.32]    [c.66]    [c.270]    [c.157]    [c.157]   
Справочник технолога-машиностроителя Т1 (2003) -- [ c.570 , c.571 , c.572 , c.573 , c.574 , c.575 , c.576 ]

Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.525 ]



ПОИСК



Возможности легирования материалов в условиях лазерного облучения

Лазерное (-ая, -ый)

Легирование

Легирование поверхностей лазерное

Оборудование для лазерного легирования и модифицирования поверхностей (О. А. Величко)

Слои поверхностные — Лазерные методы модифицирования и легировани



© 2025 Mash-xxl.info Реклама на сайте