Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расщепление в симметричных волчках

Комбинационные частоты 269, 271 Контур неразрешенных полос как индикатор типа полос 416,473, 514 Контурные линии, представление потенциальных поверхностей 220 Координаты симметрии в системе валентных сил 164 Координаты смещения,отношение к нормальным координатам 81. 83, 86, 87, 95, 160, 183 Кориолисово взаимодействие в асимметричных волчках 495 в линейных молекулах 400 в симметричных волчках 429. 435, 463 в тетраэдрических молекулах 475, 480 доля во вращательной постоянной а 401 как причина появления запрещенных колебательных переходов 486 как причина снятия вырождения 433.435 как причина удвоения / 404 правила отбора 404, 443, 475, 479, 486, 495 Кориолисово расщепление влияние на структуру полосы 457, 469, 472,481, 486  [c.603]


Вырождение уровней по знаку и Кс, присущее симметричному волчку, для асимметричного волчка снимается недиагональными элементами в (9). Получающееся при этом расщепление паз. Х -удвоением величина -удвоения максимальна при К = i ж падает с ростом К.  [c.187]

Для симметричного волчка или линейной молекулы электронно-колебательные (вибронные) уровни энергии можно классифицировать по значениям квантового числа ЙГ — Л + 2 проекции вибронного угл. момента на ось симметрии М. Электронно-колебат. взаимодействие снимает вырождение но Л и 2, и вибронные уровни энергии расщепляются. В М. типа симметричного и сферич. волчков линейные члены разложения электронного гамильтониана по координатам вырожденных колебаний не равны нулю, расщепление виб-ронных уровней в этом случае наз. линейным эффектом Яна — Теллера (см. Вибронное взаимодействие). Энергия расщеплённых подуровней даётся ф-лой  [c.189]

Для молекул вследствие Ш. э. происходит расщепление вращательных уровней энергии, причём для молекул типа симметричного волчка, обладающих пост, дипольным моментом примером является молекула аммиака NH3), характерен линейный Ш. э. Для таких молекул методом ЭПР в молекулярных пучках, аналогичным методу ЯМР, могут наблюдаться переходы между подуровнями штарковского расщепления и с большой точностью определяться величины дипольных моментов.  [c.475]

Как мы видели ранее, если для перпендикулярного колебания (тип симметрии П) Б линейной молекуле возбужден один квант, то в качестве двух составляющих движения мы можем выбрать либо а) колебания в двух взаимно перпендикулярных плоскостях, либо б) круговые колебания по часовой стрелке и против часовой стрелки вокруг оси симметрии (см. фиг. 27, а) с моментами количества движения 1== . Если в первом случае молекула вращается, то при колебании в плоскости aJ, параллельной оси вращения, не будет происходить изменения момента инерции молекулы, пока колебания являются гармоническими, так как ядра движутся параллельно оси вращения. Однако для колебания, совершающегося в плоскости а -, перпендикулярной оси вращения, момент инерции относительно оси будет изменяться, так как он слагается из начального момента инерции и момента инерции относительно оси симметрии молекулы (который для смещенной конфигурации молекулы не равен нулю). Таким образом, для двух составляющих колебаний следует ожидать несколько отличающихся между собой эффективных значений постоянной В. Если применять схему б), то при колебании атомов вокруг оси симметрии мы получим по существу такую же картину, как и для молекулы со слегка изогнутой равновесной конфигурацией, т. е. мы получим слегка асимметричный волчок, для которого снято вырождение уровней с характерное для соответствующего симметричного волчка, причем расщепление этих уровней увеличивается с увеличением вращательного квантового числа J (см. фиг. 18). В данном случае К идентично I. Таким образом, согласно любой из схем, а) или б), мы должны ожидать удвоения на основании того, что при смещении атомов молекула становится слегка асимметричным волчком.  [c.406]


Вырожденные колебательные состояния. Как и в случае симметричного волчка, силы Кориолиса, возникающие при вращении молекулы, могут обусловливать взаимодействие совместно вырожденных колебаний, которое в свою очередь приводит к заметному расщеплению вырожденных уровней.  [c.475]

Однако для трижды вырожденных колебательных состояний кориолисово взаимодействие вызывает расщепление. Это легче всего обнаружить, если рассмотреть колебание молекулы ХУ4, приведенное на фиг. 41. Если вращение происходит вокруг оси 2 и возбуждена составляющая то силы Кориолиса стремятся возбудить составляющую и не действуют на составляющую 7з(,. Ввиду этого в данном случае происходит расщепление на три компоненты, причем одна из них сохраняет первоначальное значение частоты. Так же как и для симметричного волчка, два других колебания являются такими линейными комбинациями первоначальных колебаний и зе> которые под действием сил Кориолиса уже не стремятся переходить друг в друга. Как и прежде, эти две линейные комбинации образуют два круговых колебания (по часовой стрелке и против нее) с моментами количества движения р. В действительности, силы, действующие на ядра У, не одинаковы во всех направлениях, движение отличается от кругового и является эллиптическим. Момент р параллелен или антипараллелен полному моменту количества движения.  [c.475]

Фиг. 35. Зависимость между значениями и триплетным расщеплением в невырожденном электронном состоянии молекулы типа симметричного волчка, а — при к = —1,0, [г = —0,004, х = —0,06 б — при к = —0,2, [ 1 = —0,1, у. = —0,06. По оси абсцисс отложены значения Л, но оси ординат — разности F — / о, полученные из уравнений (1,124). Чтобы получить действительную Фиг. 35. <a href="/info/583616">Зависимость между</a> значениями и <a href="/info/334519">триплетным расщеплением</a> в <a href="/info/690028">невырожденном электронном состоянии</a> <a href="/info/362654">молекулы типа симметричного волчка</a>, а — при к = —1,0, [г = —0,004, х = —0,06 б — при к = —0,2, [ 1 = —0,1, у. = —0,06. По оси абсцисс отложены значения Л, но оси ординат — разности F — / о, полученные из уравнений (1,124). Чтобы получить действительную
Параллельные полосы. Структура параллельных полос слегка асимметричных волчков совершенно аналогична структуре параллельных полос симметричных волчков. Различие заключается лишь в том, что во всех подполосах с К О имеется удвоение линий во всех трех ветвях, обусловленное асимметрией. Ыа фиг. 104 дается схема переходов между энергетическими уровнями для подполосы 1 — 1, из которой можно видеть, как образуются ветви. Чтобы понять, почему расщепление приводит к появлению только двух линий (а не четырех), следует обратиться к правилу отбора (И,97) для вытянутого волчка или к правилу (11,99) для сплюснутого волчка. Типы симметрии уровней асимметричного волчка в двух предельных случаях приведены справа и слева на схеме фиг. 104. В обоих случаях результат один и тот же  [c.248]

В отсутствие резонансов вычисление поправок на центробежное искажение и кориолисово взаимодействие методом возмущений приводит к эффективному вращательному гамильтониану или уотсониану [113, 118, 133, 134, 136 ], в котором последовательные члены содержат вторую, четвертую, шестую и т. д. степени компонент оператора углового момента. Эффективный вращательный гамильтоииан коммутирует с операциями молекулярной группы вращений и в отсутствие резонансов между состояниями, вызываемых центробежным искажением или корнолисовым взаимодействием, число К остается приближенным квантовым числом для симметричного волчка, а неприводимые представления группы D2 дают хорошую классификацию уровней асимметричного волчка. Для молекул типа сферического волчка центробежное искажение и кориолисово взаимодействие приводят к важному явлеиию частичного расщепления (2/+ 1)-кратного вырождения по k каждого уровня. Максимальное число расщепленных компонентов равно полному числу неприводимых представлений группы МС, входящих в приводимое представление Frv. Например, вращательный уровень с / = 18 основного колебательного состояния молекулы метана состоит из уровней с различными типами симметрии группы МС (см. табл. 10.14)  [c.331]


Под действием электрич. поля расщепляются но только электронные уровни атомов и молекул, но и вращат. уровни молекул, обладающих постоянным дипольным моментом (рис. 2). Для молекул типа симметричного волчка наблюдается Ш. я., пропорциональное нолю, а для молекул тина асимметричного волчка и линейных — квадратичная зависимость. Ш. я. лежпт в основе одного из наиболее точных методов определения дипольных моментов молекул. Под действием переменного электрич. ноля получается расщепление вращат. линий, периодически меняющееся со временем, что используется для модуляции частоты в микроволновой спектроскопии — т. и. 1нтар-ковская модуляция, О расщеплении уровней в кристаллах см. Спектроскопия кристаллов.  [c.425]

Члены с коафициентом /Зуд- обусловливают очень малое расщепление каждой линии на составляющие, характеризующиеся различными К- Такую структуру, однако, еще не удалось разрешить. Усреднение членов с коэфициентами Ьуд- и Dj приводит к небольшому систематическому изменению расстояний между последовательными линиями, а такмсе к тому, что четные линии ветвей / уже не совпадают в точности с линиями 5. Последнее обстоятельство, хотя тоже не приводит к заметному расщеплению, но проявляется в том, что нечетные линии R не расположены точно посредине между соседними линиями S. Это видно нз табл. 6, которая также ясно показывает систематическое изменение расстояний между линиями. Учитывая поправочные члены, Льюис и Гаустон [576] получили из экспериментально наблюденных комбинационных частот, приведенных в табл. 6, для вращательной постоянной В значение 9,92 см", которое очень хорошо совпадает со значением 6=9,945 m S полученным из инфракрасного вращательного спектра (см. стр. 46). Такое количественное совпадение, а также качественная структура спектра (в частности, появлений лишь линий, для которых ДЛ =0) с несомненностью показывает, что молекула NHj является симметричным волчком, ось которого совпадает с осью симметрии (осью симметрии третьего порядка).  [c.49]

Переходы между невырожденным и вырожденным колебательными уровнями перпендикулярные полосы. Для молекулы, являющейся симметричным волчком в силу своей симметрии, перпендикулярные полосы (Мг = 0) возникают только в результате переходов между колебательными состояниями, из которых, по крайней мере, одно вырожденное (см. табл. 55). Сначала мы рассмотрим случай, когда верхнее состояние является вырожденным, а нижнее— невырожденным (это, например, имеет место для основных частот вырожденных колебаний). Такая полоса, разумеется, весьма напоминает перпендикулярную полосу, рассмотренную ранее (см. фиг. 128). Расщепление вырожденного колебательного уровня вследствие сил Кориолиса (фиг. 118) не приводит к расп1еплению линий полосы (подполос), так как при ДЛ ==4 1 с нижним невырожденным состоянием комбинируют только уровни )-1, а при —1—только уровни —I (согласно правилу о том, что между собой комбинируют только вращательные уровни с одинаковой по.нюй симметрией, а также согласно правилу отбора для уровне - -1 и —/).  [c.457]

Вращательные уровни для вырожденных колебательных уровней невырожденных синглетных электронных состояний. В вырожденных колебательных состояниях (которые существуют для всех молекул, действительно относящихся к типу симметричного волчка) при вращении молекулы корио-лисовы силы приводят к снятию вырождения (Теллер и Тиса [1198) и Теллер [11961), причем расщепление уровней в первом приближении возрастает линейно с увеличением квантового числа К (см. [23], стр. 429). Это расщепление обусловлено тем, что момент количества движения относительно оси волчка Khl2n представляет собой сумму вращательного и колебательного членов. Последний равен /i/2n (см. стр. 67), и поэтому вращательный член равен К ) hl2n, где знак минус ставится, когда колебательный момент параллелен вектору К, а знак плюс — когда он антинараллелеп. Поэтому в формулах вращательной энергии (1,102) и (1,106) надо заменить АК на А (К и СК на С К ц- соответственно. Эта замена означает, что к уравнению (1,102) для вытянутого волчка надо прибавить член  [c.87]

Если бы не было эффектов более высокого порядка, уровни Ai и А2 при данных J ж К имели бы одинаковую энергию точно так же, как две компоненты уровней с данным J в электронно-колебательном состоянии П линейной молекулы. Когда возбуждено вырожденное колебание v , из-за кориолисова взаимодействия или просто из-за колебательно-вращательного взаимодействия возникает расщепление уровней на две компоненты, которое называется -удвоением, несмотря на то что в молекулах типа симметричного волчка в отличие от линейных молекул момент количества движения (колебательный) равен не (hl2n), а Сг h 2n) (см. стр. 67). Гаринг, Нильсен и Pao [406] показали, что точно так же, как в линейных молекулах, при А = 1 удвоение в первом хорошем приближении равно  [c.97]

Свойства симметрии вращательных уровней. В томе 11 ([23], стр. 477) дана классификация вращательных уровней сферического волчка в соответствии с вращательной подгруппой рассматриваемой точечной группы. Хоуген [573] считает, что, как п в случае молекул типа симметричного волчка, можно, а для некоторых задач и необходимо классифицировать эти уровни в соответствии с полной симметриехг точечной группы. Хоуген нашел, что вращательные волновые функции сферического волчка ведут себя подобно четным типам DJg непрерывной вращательно-инверсионной группы-Кл (табл. 55, приложение I). Эти типы (2/- -1)-кратно вырождены. Их надо подразделить на типы точечной группы рассматриваел10Й молекулы. Здесь будут рассмотрены только тетраэдрические молекулы точечной группы Тй, которая имеет типы Ах, А2, Е, Ех, Е2- Это возможные типы вращательных уровней. Корреляция тинов DJg и типов при небольших значениях / приведена в табл. 58 (приложение IV). Самый нижний уровень / = О имеет тин Ах, следующий уровень / = 1 имеет тин Ех, т. е. в любом приближении ни один из этих уровней не может расщепляться. При / = 2 получаем Е + а при / — 3 получаем А Л- Ех -Н Ео, т. е. здесь возможны расщепления (см. ниже).  [c.101]


Тонкая структура невырожденных электронно-колебательных состояний. Во вращательных уровнях данного электронно-колебательного уровня, имеюпщх одно и то же /, но различные типы, по-разному проявляется влияние кориолисова взаимодействия с вращательными уровнями других электронно-колебательных уровней, влияние центробежного растяжения или других взаимодействий более высоких порядков. Поэтому в достаточно высоком приближении существует расщепление на столько уровней, сколько показано числом горизонтальных линий на фиг. 38. Иными словами, когда молекула деформирована центробежными силами или неполносимметричными колебаниями, она перестает быть строго симметричным волчком и исчезает причина для (21 - - 1)-кратного вырождения. Вырождение снимается в той мере, в какой нарушена симметрия. Получающиеся расщепления подробно рассмотрены Яном [617], а затем Хехтом [485]. К сожалению, эти расщепления нельзя описать простыми формулами. Они зависят от матричных элементов различных возмущающих членов.  [c.103]

Теория спинового расщепления в молекулах типа асимметричного волчка подробно рассматривалась Гендерсоном [493] и Райнесом [1059] см. также Лин [752]). Их формулы, преобразованные для молекул типа симметричного волчка, уже использовались при описании спинового расщепления в таких молекулах (стр. 90 и след.). В случае молекул типа асимметричного волчка в формулах расщепления появ.ляются дополнительные члены.  [c.116]

N — - г- Как и прежде, Fg N ) — это энергия без учета спинового расщепления, вычисляемая по формуле (1,138), в которой вместо J-t теперь берется Л". Постоянная расщепления у в первом приближении находится по такой же формуле, как в молекулах типа симметричного волчка, с той лишь разницей, что теперь берется несколько иная постоянная расщепления уровней (с и d) при А" 1, которые в данном случае разделяются, как правило, довольно сильно. В качестве первого приближения Райнес [10591 дает соотношение  [c.118]

В качестве примера на фиг. 43 по данным Дресслера и Рамсея [308] показана зависимость между наблюдаемым дублетным расщеплением в основном состоянии молекулы NH, и величиной N. Пунктирные кривые соответствуют случаю X 0,335, i О, tij = О, т. е. приближению симметричного волчка (Герцберг [523]). Сплошные кривые соответствуют х = 0,335, х = 0,02, Til 0,016. Нетрудно заметить, что введение членов асимметрии немного улучшает согласие с экспериментальными данными, но довольно большое различие в величине расщепления ii-дублетов нри X > 1 не воспроизводится. Исследование дублетных расщеплений в NO2 и СЮ2 проведено Райнесом [1059].  [c.118]

Расщепление Штарка. Если у молекулы типа симметричного волчка имеется постоянный электрический дипольный момент, то, как было показано в гл. I, разд. 4, расщепление энергетических уровней в электрическом поле в первом приближении должно быть точно таким же, как и в магнитном поле. Поскольку правила отбора одинаковы, штарковские компоненты лишш в электрическом иоле такие же, как компоненты в магнитном поле. Расщепление линий в Р-, Q- ж Л-ветвях должно происходить соответственно на 3(2/ + 1), 3(2/) и 3(2/ — 1) компонент. Полное расщепление, за исключением линий с самыми низкими значениями /, дается выражением  [c.274]

Интересной особенностью полос HSi l и HSiBr является присутствие в спектре,-помимо ветвей с АК = 1 и О, ветвей с A, К = +2. Появление этих полос не может быть объяснено отклонением структуры молекулы от симметричного волчка, так как эти отклонения пренебрежимо малы (6 = — 0,00052 для HSi l), и даже в спектрах значительно более асимметричных молекул не имеется никаких намеков на такие ветви, которые в согласии с теорией должны иметь очень малую интенсивность. Герцберг и Верма [545] и Хоуген [574] высказали предположение, что причиной подобной аномалии является спин-орбитальное взаимодействие, или, другими словами, что наблюдаемый электронный переход является переходом типа М" — 1Л, (см. стр. 268). Однако отсутствие заметного триплетного расщепления ставит под сомнение такую интерпретацию. В качестве альтернативы можно, очевидно, рассматривать преобразование (поворот) осей (см. стр. 208).  [c.508]

Иннес и Джиддингс [607] изучили на приборе с очень высоким разрешением слабую систему при 3700 А. Они нашли, что в спектре поглощения структура полосы очень похожа на структуру полос 3300 А, т. е. что она является полосой параллельного перехода. Однако наблюдающееся небольшое чередование интенсивности в ветвях заставляет предполагать существование, кроме главных переходов с АК = О, переходов с АК = 2. Для плоской молекулы типа почти симметричного волчка интервал 4 В — С) в (З-ветвях с АК = 2 почти такой же, как и интервал в Р- и Л-ветвях (а именно 2В) в компоненте АК = 0 но компонента АК = 2 будет иметь чередование интенсивностей в отношении 13 11 как функцию К, поскольку ось волчка является осью симметрии второго порядка. Присутствие ветвей А ЛГ = 2 может быть объяснено, если предположить, что переход является переходом триплет — синглет (Герцберг [523] см. гл. II, разд. 3,в). Наиболее вероятно, что этот триплет-синглетный переход является переходом Вз1 — A g, соответствующим переходу Дзи —при 3300 А. Предложенная интерпретация полностью подтвердилась наблюдением Дугласа и ]У1ил-тона [299] большого зеемановского расщепления системы 3700 А.  [c.558]

Л ), / г (N), /< з N) — вращательные термы (компоненты спинового расщепления) в случае связи Ь но Гунду р1 (Л т), / 2 (Л t), Ез (N ),. .. — вращательные термы (компоненты спинового расщепления) асимметричного волчка Л, К), / 2 (Л К), Ез (N, К),. .. — вращате.льные термы (компоненты спинового расщепления) молекул типа симметричного волчка Ео N, К) вращательные термы симметричного волчка без учета спина Е , Е1, Е2 — подуровни электронно-колебательного уровня сферического волчка  [c.759]

Спиновое расщепление. Молекулы типа асимметричного волчка в отличие от молекул тина симметричного (или сферического) волчка и линейных не могут иметь электронного орбитального момента количества движения, и поэтому у них, как правило, небольшое расщепление уровней, обусловленное ненулевым электронным спином. Такое расщепление может быть неносред-ственпо вызвано только взаимодействием спина с очень слабым магнитным моментом, появляющимся нри вращении молекулы как целого. Однако существует также косвенное влияние связи спина 8 с орбитальным моментом L, даже несмотря на то, что последний в среднем равен нулю (т. е. даже несмотря на то, что равны нулю диагональные элементы момента X).  [c.116]


Смотреть страницы где упоминается термин Расщепление в симметричных волчках : [c.275]    [c.406]    [c.517]    [c.32]    [c.39]    [c.44]    [c.482]    [c.621]    [c.97]    [c.118]    [c.249]    [c.253]    [c.274]    [c.739]    [c.188]    [c.188]    [c.257]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.429 , c.435 , c.457 ]



ПОИСК



274, 323—327 симметричный

Волосевич

Волчков

Волчок

Волчок симметричный

Кориолисово расщепление симметричного волчка

Ле, Л[0], Ару Врр >Э 0 Вру симметричных волчков

Общие формулы вращательнохТ энергии.— Приближение для волчков, близких к симметричным.— Центробежная деформация.— Свойства симметрии вращательных уровней.— Правила сумм,— Спиновое расщепление.—В озмущения Другие типы молекул

Расщепление

Расщепление волчков

Расщепление вырожденных вращательных уровней симметричных волчков, асимметричных

Расщепление симметричных волчков (удвоение

Симметричный волчок кориолисово расщепление первого порядка



© 2025 Mash-xxl.info Реклама на сайте