Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рециркуляция

Температуру стенок труб воздухоподогревателя во избежание конденсации на них водяных паров из уходящих газов желательно поддерживать выше точки росы. Этого можно достичь предварительным подогревом воздуха в паровом калорифере либо рециркуляцией части горячего воздуха.  [c.151]

Рис. 1.12. Схема ПГУ с предварительной газификацией твердого топлива в псевдоожиженном слое дробленый доломит 2 — дробленый уголь 3—угольный шлюз 4—доломитовый шлюз 5— осушитель угля 6—рециркуляция газа 7—рециркуляционный компрессор й—подача угля- в газогенератор 9—подача доломита 10-реактор с псевдоожиженным слоем 11—использованный доломит 12—топка газификатора 13—переработанный крупнодисперсный уголь 14 — мелкодисперсный уголь 15 — воздух 16—пар 17 — зола 18 — система возврата частиц 19 — систему удаления твердых частиц 20 — газовая турбина 21 — котел-утилизатор 22 — паровая турбина 23 — электрогенератор 24 — уходящие газы Рис. 1.12. Схема ПГУ с предварительной газификацией <a href="/info/881">твердого топлива</a> в <a href="/info/5512">псевдоожиженном слое</a> дробленый доломит 2 — дробленый уголь 3—угольный шлюз 4—доломитовый шлюз 5— осушитель угля 6—<a href="/info/73993">рециркуляция газа</a> 7—рециркуляционный компрессор й—подача угля- в газогенератор 9—подача доломита 10-реактор с <a href="/info/5512">псевдоожиженным слоем</a> 11—использованный доломит 12—топка газификатора 13—переработанный крупнодисперсный уголь 14 — мелкодисперсный уголь 15 — воздух 16—пар 17 — зола 18 — система возврата частиц 19 — систему удаления <a href="/info/184030">твердых частиц</a> 20 — <a href="/info/884">газовая турбина</a> 21 — <a href="/info/30635">котел-утилизатор</a> 22 — <a href="/info/885">паровая турбина</a> 23 — электрогенератор 24 — уходящие газы

Снижение выбросов продуктов неполного сгорания при одновременном повышении максимальной температуры цикла сопровождается ростом выбросов окислов азота. Учитывая весомость NOx в балансе токсичных выбросов, необходимо в некоторых случаях пойти на заведомое ухудшение процесса сгорания с целью снижения максимальных температур цикла, определяющих образование окислов азота. Для этого применяют рециркуляцию — перепуск во впускную систему части ОГ, которые попадают в камеру сгорания как инертный заряд, обладающий высокой теплоемкостью (в 1,5 раза выше, чем воздуха). При этом часть теплоты сгорания топлива дополнительно затрачивается на нагрев инертной массы, тем самым снижается максимальная температура цикла и образование ЫО .  [c.45]

Рециркуляция применяется как в бензиновых двигателях, так и дизелях. Перепуск ОГ происходит из-за разности давлений в системе выпуска и впуска, регулирования степени рециркуляции — с помощью заслонок и клапанов. На полных нагрузках рециркуляцию применять нецелесообразно, так как значительно возрастают выбросы углеводородов, сажи, расход топлива (до 20%). Более эффективна межцилиндровая рециркуляция отработавших газов, когда ОГ переходят из цилиндра, в котором заканчивается такт выпуска, в цилиндр с тактом впуска. Каналы рециркуляции открываются поршнями в их положении у н.м.т. Высокая скорость перетекания газов способствует также интенсивному завихрению заряда в цилиндрах.  [c.45]

Практически на любом топливе можно достичь минимального уровня токсичности двигателя путем оптимизации процесса сгорания, физико-химической обработки ОГ (переход на дизельный цикл, введение нейтрализации и рециркуляции ОГ, применения присадок). В зависимости от структуры топливного баланса применяются и будут применяться жидкие и газообразные топлива разного химического состава — углеводородные, спиртовые, эфирные, аминные, водород и другие, а также присадки.  [c.52]

Из одиннадцати японских автомобильных фирм, продукция которых отличается высоким техническим уровнем, практически на всех моделях автомобилей с бензиновыми двигателями применяются каталитические нейтрализаторы, подача вторичного воздуха в систему выпуска, на всех без исключения моделях — рециркуляция отработавших газов на двух моделях — уменьшение угла опережения зажигания [26].  [c.59]

ИЛИ ЗОНОЙ рециркуляции (см. рис. 1.4,г). Однако вниз по течению вследствие естественного снижения интенсивности закрутки в процессе преодоления действующих диссипативных сил профиль потока вновь соответствует нормальному распределению. При дальнейшем повышении степени закрутки потока зона обратных токов возрастает настолько, что струя вниз по течению потока не смыкается (см. рис. А,д).  [c.21]


При определенных условиях (определенном сочетании режимных и геометрических параметров) наблюдается реверс вихревой трубы, заключающийся в том, что из отверстия диафрагмы истекают не охлажденные, а подогретые массы газа. При этом полная температура периферийного потока, покидающего камеру энергоразделения через дроссель, ниже исходной. А.П. Меркуловым введено понятие вторичного вихревого эффекта [116] и предпринята попытка его объяснения, основанная на теоретических положениях гипотезы взаимодействия вихрей. При работе вихревой трубы на сравнительно высоких степенях закрутки в приосевой зоне отверстия диафрагмы вследствие существенного снижения уровня давления в области, где статическое давление меньше давления среды, в которую происходит истечение (Р < J ), возникает зона обратных в осевом направлении течений, т. е. в отверстии диафрагмы образуется рециркуляционная зона. При некотором сочетании режимных и геометрических параметров взаимодействие зоны рециркуляции и вытекающих элементов в виде кольцевого закрученного потока из периферийной области диафрагмы приводит к образованию вихревой трубы, наружный  [c.89]

Рис. 4.8. Эпюры скоростей в отсутствие возвратных течений (а) и при наличии зоны рециркуляции (б) Рис. 4.8. <a href="/info/2683">Эпюры скоростей</a> в отсутствие <a href="/info/203335">возвратных течений</a> (а) и при наличии зоны рециркуляции (б)
Рис. 6.9. Конструкция и основные размеры вихревой трубы (образец S) с рециркуляцией охлаждаемого на оребрении горячего потока [7] Рис. 6.9. Конструкция и основные размеры <a href="/info/102712">вихревой трубы</a> (образец S) с рециркуляцией охлаждаемого на оребрении горячего потока [7]
Для повышения эффективности работы таких массообменных аппаратов, как абсорберы осушки газа, работающих при малых массовых соотношениях жидкости и газа в контактных ступенях (порядка 0,01), между тарелками ситчатой и контактно-сепарационной предусмотрена рециркуляция жидкости, что еще более увеличивает поверхность контакта и повышает кпд тарелок (см. рис. 10.1, а).  [c.275]

На следующем этапе совершенствования аппаратов с центробежными контактно-сепарационными элементами распыливающие ситчатые тарелки были исключены, и контакт жидкости с газом осуществлялся непосредственно в прямоточном контактно-сепарационном элементе с рециркуляцией в нем жидкости (см. рис. 10.1, б), т.е. жидкость, отсепарированная на элементе, попадала на полотно тарелки, откуда вновь поступала в него на контакт с газом, а ее избыток переливался на нижележащую тарелку.  [c.275]

Далее был определен ряд аппаратов, в которых рециркуляция жидкости была исключена или сведена к минимуму. Это абсорберы осушки газа с большим содержанием влаги, т.е. с температурой газа порядка 40 5°С. Конструкция контактных тарелок для таких аппаратов выполнена с индивидуальной подачей жидкости в каждый элемент и исключает повторный контакт жидкости с газом (см. рис. 10.1, в).  [c.275]

Таким образом, уравнения (10.1.1), (10.1.2) и (10.2.3) при сделанных выше предположениях описывают изменение концентрации гликоля (ДЭГа) в растворе абсорбента на контактной тарелке с учетом рециркуляции абсорбента в контактных элементах.  [c.281]

Из приведенных результатов следует, что основное изменение а ,а также происходит в интервале значений коэффициента рециркуляции от 1 до 10. Увеличение п сверх 10 мало изменяет значения а , и С . Это означает, что система близка к равновесию и рециркуляция абсорбента позволяет более полно использовать абсорбирующую способность раствора на каждой ступени контакта. Однако следует иметь в виду, что увеличение п приводит к отрицательным последствиям. Так, пропорционально п увеличивается объемное содержание жидкой фазы в потоке газа в контактном элементе и, как следствие этого, увеличивается унос жидкости из элемента.  [c.282]

Благодаря созданию новых высокоскоростных массообменных устройств, позволяющих осуществить контакт жидкости с газом непосредственно в прямоточном контактно-сепарационном элементе с рециркуляцией в нем жидкости (10.1.1), стало возможным отказаться от промежуточных ситчатых массообменных тарелок. Это позволило сократить высоту массообменной части абсорбера с 4,64 до 2,1 м и соответственно высоту аппарата в целом в 1,5 раза, снизить металлоемкость в 1,4-1,5 раза при одновременном увеличении верхнего предела производительности аппарата на 20% [22].  [c.300]


Рис. 19.9. Осветлители со слоем взвешенного осадка коридорного типа с рециркуляцией осадка и ВНИИГС-2 Рис. 19.9. Осветлители со слоем взвешенного осадка коридорного типа с рециркуляцией осадка и ВНИИГС-2
По режиму работы — биофильтры, работающие с рециркуляцией и без рециркуляции. Рециркуляция позволяет понижать концентрацию сточных вод до необходимой величины. При очистке концентрированных сточных вод их разбавление желательно, а в некоторых случаях и обязательно.  [c.361]

Наиболее щирокое распространение в настоящее время получила система оборотного водоснабжения ванн плавательных бассейнов, обеспечивающая многократное использование воды благодаря непрерывной очистке и дезинфекции ее в процессе рециркуляции (рис. 25.19).  [c.397]

Обкатка агрегата на линию рециркуляции производится до окончания необходимых регулировок и достижения установившейся температуры основных узлов и агрегатов. Продолжительность обкатки должна фиксироваться в журнале. Обычно обкатка считается законченной, если насос проработал (желательно непрерывно) в течение 72 ч.  [c.199]

Высокие темпы ужесточения норм на выбросы вредных веществ привели к ухудшению показателей топливной экономичности автомобилей в среднем на 13% вследствие применения многочисленных дополнительных устройств снижения токсичности, дефорсирования двигателей, введения систем рециркуляции ОГ, установки термических и каталитических нейтрализаторов без фактического улучшения рабочего процесса двигателя. Кроме значительного возрастания первоначальных и эксплуатационных затрат это привело с учетом перенасыщенности страны легковыми автомобилями к общему росту выбросов ОГ, повышенно.му тепловому загрязнению атмосферы и другим побочным последствиям. Повышение цен на топливо, так называемый энергетический кризис, привеоТи к необхо-  [c.33]

Специалистами автополигона НАМИ проведена стоимостная оценка мероприятий по выполнению перспективных норм по токсичности и топливной экономичности легковых автомобилей 122]. В частности, их выполнение возможно как применением расслоения заряда в карбюраторном двигателе, так и использованием дизелей с непосредственным впрыском. В обоих случаях необходима рециркуляция ОГ. Дополнительные затраты в производстве оцениваются соответственно в 15 и 60% от исходного уровня. В эксплуатации затраты складываются в пользу дизелей. Учитывая типаж  [c.60]

В гл. 6 рассмотрена категория неадиабатных (охлаждаемых или нагреваемых) вихревых энергоразделителей. Рассмотрены вихревые трубы с внутренним оребрением камеры энергоразделения и рециркуляцией горячего потока, вихревые трубы с щелевым диффузором (самовакуумирующиеся вихревые трубы) и приведены примеры их технического применения вихревые гигрометры, вихревые карбюраторы, вакуумная ловушка и т.п.  [c.5]

В середине 60-х и в конце 70-х годов появились интересные конструкции, позволившие довести температурную эффективность процесса энергоразделения до 0,70 [40,116] при степени расширения п,- 9, абсолютный эффект охлаждения составил ЛТ = 87К. Адиабатный КПД вихревых труб достиг 0,38-0,4 для неохлаждаемых фуб (вихревая труба с дополнительным потоком Ш.А. Пиралишвили) и 0,4-0,42 для неадиабатных охлаждаемых вихревых труб с рециркуляцией подофетого потока (вихревая труба с рециркуляцией потока А.Д. Суслова и А.В. Мурашкина). Рассмотрим их подробней.  [c.79]

Рекомендации по оптимальной геометрии впоследствии были подтверждены на неадиабатных вихревых энергоразделителях с рециркуляцией подогретых масс газа, используемых после охлаждения для организации дополнительного потока.  [c.89]

Макроструктуру потоков изучали как отечественные, так и зарубежные авторы [112. 116, 146, 168, 184, 204, 209, 227, 236, 245, 265]. Уже первые исследователи столкнулись с непреодолимыми трудностями зондирования потока в камере энергоразделения вихревой трубы и были вынуждены прибегнуть к методам визуализации. Шепер [156] предпринял одну из первых попыток выявления харакгерных особенностей течения закрученного потока в трубе на различных режимах работы по ц, используя для этой цели визуализацию дымом и шелковыми нитями. Опыты ставились при d = 38 мм и позволили выявить четыре наиболее характерных режима ее работы, различающихся диапазоном и характерными значениями относительной доли охлажденного потока ц < О — режим эжектирования газа через отверстие диафрагмы (режим вакуум-насоса) ц = О — режим рециркуляции охлажденного потока через отверстие диафрагмы О < ц < 1, — режим наи-более часто встречающийся в технических устройствах, и ц = 1 — режим дросселирования с элементами энергоразделения и создания локальных зон повышенной температуры в сечении, удаленном от соплового ввода. Позднее Ш.А. Пиралишвили и  [c.99]

Таким образом, КВС как области с повышенным энергосодержанием, переходят на периферию, тем самым увеличивая ее энергию. Такой механизм неустойчивости действует только в одном направлении и хорюшо согласуется с возникновением реверса при образовании зоны рециркуляции в области диафрагмы вихревой трубы. В этом случае КВС возникают на фанице рециркулирующего потока. Направление силы Г можно определить по знаку скалярного произведения вектора угловой скорости вращения приосевого вихря Л и вектора угловой скорости вихревого жгута <0, после его разворота. В описанном выше безре-циркуляционном режиме это произведение положительно, что соответствует силе, направленной к периферии. Возникновение зоны рециркуляции приводит к изменению направления начальной завихренности КВС и осевой составляющей скорости, что соответствует зеркальному отражению относительно плоскости, перпендикулярной оси вихревой трубы. Но при зеркальном отражении скалярное произведение не изменяется и, соответственно, не изменяется направление действия силы F. В результате вихревой перенос энергии будет идти из зоны рециркуляции в область потока, выносимого через отверстие диафрагмы, что и приводит в конечном счете к его нагреванию.  [c.130]


Явление реверса автоматически объясняется появлением зоны рециркуляции и соответствующей поверхности раздела приосе-вого вихря и рециркуляционного потока. В этом случае вихревой перенос энергии осуществляется из зоны рециркуляции в область потока, выносимого через отверстие диафрагмы, который таким образом нагревается.  [c.133]

При осесимметричном и спиральном распаде поток сильно турбулизируется и, как считают, служит предвестником рециркуляции.  [c.145]

Все виды охлаждаемых вихревых труб были подразделены [116] на два типа с кольцевой полостью межрубашечного пространства, по которому протекает охлаждающая жидкость и с подачей охлаждающей жидкости во внутрь камеры энергоразяеления. Однако работы А.И. Азарова [7—10] и А.Д. Суслова [37—40] с учениками существенно расширили возможные схемы и варианты конструктивного исполнения охлаждаемых вихревых труб. Это и вихревые трубы с внутренним оребрением, и рециркуляция подогретых масс газа в вихревой трубе с дополнительным потоком.  [c.288]

Процесс смесеобразования, неразрывно связанный с аэродинамической картиной, существенно зависит от интенсивности крутки потока S, с ростом которой возрастает степень испарен-ности топлива, улучшаются качества распыла. Сильно закрученные потоки имеют S > 0,6. В этом случае в приосевой области воспламенителя появляется область обратных токов, в которой существует зона пониженных скоростей, благоприятствующая возгоранию. Рециркуляция приводит к появлению сдвиговых моментов, турбулизирующих поток, что интенсифицирует процесс смешения, а при работающем воспламенителе способствует энергомассопереносу в радиальном направлении, играющему важную роль в вопросе стабилизации пламени.  [c.312]

Возможность эффективной тепловой зашиты корпусных элементов от больших тепловых потоков успешно используется и при создании экспериментальных СВЧ плазмотронов [64]. Схемы СВЧ плазмотронов с предполагаемыми картинами течений при прямоточно-вихревой и возвратно-вихревой стабилизации плазмы показаны на рис. 7.30, а на рис. 7.31 показана зависимость мощности плазменного СВЧ излучения поглощаемого разрядом, и тепловой мощности fV , вьшеляюшейся в контуре охлаждения плазмотрона. Результаты опытов приведены в виде зависимости доли тепловых потерь WJW от удельного вклада энергии в разряд У = WJG, где G — расход плазмообразуюшего газа — азота. Результаты численного моделирования показаны на рис. 7.32,а — для традиционной прямоточно вихревой стабилизации и на рис. 7.32,6 — для случая с возвратно-вихревой стабилизацией. В первом случае рабочее тело — плазмообразующий газ — азот в виде закрученного потока подается в разрядную камеру, а во втором случае он подается в дополнительную вихревую камеру со скоростями 100 м/с ((7= 1 г/с) и 225 м/с ((7= 1,5 г/с), соответственно. По мнению автора работы [64] возвратный вихрь сжимает зону нагрева, предохраняя стенки камеры плазмотрона от перегрева. Основная часть газа проходит через разрядную зону, а размер зоны рециркуляции незначителен. В традиционной схеме (см. рис. 7.32,а) входящий газ смешивается с циркулирующим потоком плазмы и основная часть газа проходит мимо разряда вдоль стенок кварцевой трубки. Судя по приведенным модельным расчетам, схема с возвратно-вихревой стабилизацией позволяет снизить максимально достижимую температуру нагрева корпусных элементов примерно в 2,5 раза. Наиболее нагретая часть область диафрагмы, непосредственно примыкающая к отверстию имеет температуру 1400 К. Таким образом, использование возвратно-вихревой стабилизации плазмы позволяет изготовить СВЧ плазмотрон неохлаж-даемым из кварцевого стекла. Дальнейшее моделирование течения  [c.356]

Элемент работает следующим образом. После завихрителя закрученный поток газа попадает в патрубок центробежного элемента. За счет образования в центре патрубка зоны разрежения туда подсасывается жидкость, и она попадает на наружную поверхность вытеснителя, с кромок которого за счет действия центробежных сил капли определенного диаметра срываются и отбрасываются на внутреннюю стенку патрубка, на которой образуется вращающаяся пленка жидкости, движущаяся за счет трения газа о ее поверхность в направлении канала между пленкосъемником и наружной стенкой патрубка. Частицы меньшего диаметра за счет сил, образованных разностью давлений на оси и кромках вытеснителя, заполняют чашу последнего. Там частицы укрупняются, образуя жидкость. При переполнении вытеснителя крупные частицы отбрасываются к стенке, т.е. происходит рециркуляция жидкости во внутренней полости вытеснителя. Массообмен между газом и жидкостью осуществляется на поверхности капли жидкости и на поверхности жидкостной пленки. Для увеличения поверхности контакта используют принцип рециркуляции жидкости, в результате которого часть отсепарированной жидкости обратно засасывается в элемент, что приводит к увеличению количества капель, а, следовательно, поверхности контакта и кпд тарелки. При этом возрастает общий расход жидкости, поступающей на контактную тарелку (и в элемент), и отбираемой с нее. Рециркуляцию жидкости используют обычно в процессах с малым массовым соотношением жидкости и газа ( 0,01), коэффициент рециркуляции при этом дает положительный эффект при его значениях не более 5-6. Дальнейшее его увеличение уже мало влияет на повышение кпд тарелки из-за возрастания капельного уноса, вызванного значительным ростом расхода жидкости.  [c.275]

Анализ работы контактно-сепарационных устройств показал, что отбираемому расчетному количеству жидкости с элемента должно соответствовать определенное количество газа. Невыполнение этого условия приводит к повышенному уносу капельной жидкости с основным потоком газа или вторичному уносу жидкости с газом, выходящим из-под каплесъемника. Такая зависимость обусловливает необходимость выполнения канала для выхода жидкости из элемента переменного или регулируемого сечения [2] для возможности подачи расчетного количества жидкости в контактно-сепарационный элемент с учетом равновесной влаги в газовом потоке и унесенной капельной жидкости, а также коэффициента рециркуляции.  [c.276]

Способ контакта газа и жидкости с последующей сепарацией фаз осуществляется следующим образом (рис. 10.2). Газожидкостный поток Ср закручивают. Жидкостной поток 1, формируют закрученным газовым потоком в виде пленки на внутренней поверхности тела вращения в поле центробежных сил. Предварительно разделенный газовый поток подают на коническую поверхность на фильтрацию (на 2-ю ступень сепарации), отфильтрованную жидкость (поток /) объединяют с жидкостным потоком пленки и с байпасирующим потоком газа Со для улучшения транспортировки жидкости. Часть этого объединенного потока подают на рециркуляцию (Ср), часть потока фильтруют (Сф) на обтцей замкнутой поверхности. Отфильтрованную жидкость отбирают потоком L, а газ для транспортировки -потоком С.,р после чего его смешивают с основным газовым потоком С. Таким образом, основной газовый поток С и поток С.,.р проходят ступень тонкой очистки (фильтрацию). Ступени грубой или тонкой фильтрации одновременно проходит и предварительно разделенный жидкостный поток.  [c.277]

Массообмен в контактных элементах с учетом рециркуляции абсорбента. Для абсорберов противоточного типа наиболее перспективно применение высокоскоростных прямоточных центробежных сепараци-онно-контактных элементов с тангенциальным подводом газа и рециркуляцией абсорбента. Элементы устанавливаются на горизонтальной тарелке, на которой находится слой абсорбента высотой Н. Абсорбент через трубку попадает в элемент и истекает из трубки в набегающий поток газа в противотоке. В результате жидкость дробится, образующиеся капли подхватываются закрученным потоком и осаждаются на стенке элемента. Отсепарированная жидкость возвращается на тарелку.  [c.280]

На рис. 10.4 представлена завиеимость концентрации гликоля в слое абсорбента на тарелке с центробежными еепарационно-контактными элементами конструкции ЦКБН в момент времени после л-кратной рециркуляции в зависимости от коэффициента рециркуляции п. Расчеты проводились при значениях р = 7,5 МПа, Т -= 13,5° С, ск) = 0.24 г/м Бзо = 0,9916, О, = 12,8 млн м , =  [c.282]


Рис. 19.7. Р.здиальный отстойник с рециркуляцией осадка н тонкослойными модулями Рис. 19.7. Р.здиальный отстойник с рециркуляцией осадка н тонкослойными модулями
Перед пуском насоса проверяется надежность крепления наружных гаек, наличие установочных штифтов, исправность и правильность работы арматуры, наличие и состав масла в маслосистеме, комплектность и исправность контрольно-измерительных приборов. Затем соединяют муфты при разобранной схеме питания приводного электродвигателя. Вручную проворачивается ротор агрегата. Пробный пуска агрегата рекомендуется производить на линии рециркуляции. Задвижка на трубопроводе разгрузки гидропяты (если она имеется), вентили на линии рециркуляции и вспомогательные трубопроводы должны быть открыты. На уплотнения подаются конденсат и вода для охлаждения.  [c.198]

Насосы вспомогательных циклов работы 1) испарительной установки 2) подачи жидкого топлива к бакам хранения и рециркуляции 3) промливневой и фекальной канализации 4) масляного хозяйства 5) дренажные насосы различного назначения 6) вспомогательные насосы химической водоочистки, насосы-дозаторы 7) технического водоснабжения.  [c.219]


Смотреть страницы где упоминается термин Рециркуляция : [c.142]    [c.158]    [c.273]    [c.273]    [c.274]    [c.280]    [c.299]    [c.218]    [c.397]    [c.200]    [c.201]   
Теплотехника (1986) -- [ c.368 ]

Архитектурное проектирование общественных зданий и сооружений Издание 2 (нет страниц 321-352) (1985) -- [ c.112 , c.116 ]

Тепломассообмен (1972) -- [ c.511 ]



ПОИСК



Бутусов Д.С., Проскуряков А.М., Соколинский Л.И Источники возбуждения и методы устранения высокочастотной вибрации трубопроводов рециркуляции при введении в эксплуатацию системы антипомпажного регулирования фирмы ССС

Воздухоподогреватели рециркуляция

Динамические характеристики перегревателей и автоматизация регулирования перегрева поворотными горелками и рециркуляцией газов

Дымососы для рециркуляции дымовых газов

Коэффициент рециркуляции воздуха

Особенности расчета котлов под наддувом и ВПГ, котлов с рециркуляцией газов или воздуха и котлов с параллельными газоходами

Подогрев газов рециркуляции котла отборным паром турбин

Промышленные исследования рециркуляции газов на котле с вторичным перегревом пара

Расход воздуха кондиционированного полезный на рециркуляцию

Расчетные исследования рециркуляции газов и исследования на опытно-промышленной установке

Регулирование рециркуляцией

Рециркуляция воздуха

Рециркуляция газов

Рециркуляция газов в высокотемпературных печах

Рециркуляция газов в низкотемпературных и среднетемпературных печах

Рециркуляция газов в сушилках

Рециркуляция газов как средство, улучшающее сжигание углей и антрацитов в слоевых топках

Рециркуляция горячего воздуха

Рециркуляция горячей воды

Рециркуляция дымовых газов

Рециркуляция дымовых газов как средство повышения тепловой эффективности огнетехнических агрегатов

Рециркуляция мазута

Рециркуляция мазута в мазутохозяйстве

Рециркуляция отработавших газо

Рециркуляция питательной воды

Рециркуляция продуктов сгорания

Рециркуляция части горячего воздуха котла

Система рециркуляции воды для охлаждения плазмотронов на машине Кристалл

Система рециркуляции отработавших газов

Сушила литейные без рециркуляции

Токсичность Рециркуляция продуктов сгорания

Уход за системой рециркуляции отработавших газов

Форсунка с рециркуляцией

Ц с рециркуляцией, улиточным подводом газов

Шланги разрежения для -усилителя тормозного привода и системы рециркуляции отработанных газов

Эксплуатационные особенности системы рециркуляции газов

Электромагнитный клапан системы рециркуляции отработавших газов (СРОГ)



© 2025 Mash-xxl.info Реклама на сайте