Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб стержня прямой плоский

Какие нагрузки вызывают плоский прямой изгиб стержня  [c.59]

Ниже рассматривается плоский прямой изгиб стержней, поперечные сечения которых имеют по крайней мере одну плоскость (ось) симметрии, совпадающую с силовой плоскостью (рис. 12.1).  [c.192]

Изгиб стержня за пределом упругости 206 поперечный 204 прямой плоский 192 с кручением 223 упругий 192 Изнашивание 260, 265 абразивное 266 коррозионно-механическое 267  [c.564]


Плоский поперечный изгиб. Пусть поперечное сечение прямого стержня имеет две оси симметрии х, у. Пусть, далее, на этот стержень в одной из плоскостей, содержащих ось стержня г и одну из осей симметрии, х или у, его поперечного сечения, действуют сосредоточенные силы и распределенная нагрузка. В этих условиях изгиб стержня происходит в плоскости действия нагрузки и его упругая линия будет плоской кривой. Такой изгиб называют плоским. Чистый изгиб, рассмотренный в предыдущем параграфе, является частным случаем плоского поперечного изгиба, при котором нагрузка состоит только из двух изгибающих пар. При поперечном изгибе в произвольном поперечном сечении стержня кроме изгибающего момента действуют поперечная сила Q, а иногда еще и продольная сила N. При отсутствии продольной силы связь между изгибающим моментом М, поперечной силой Q и интенсивностью поперечной нагрузки д определяется формулами (5.3) и (5.4), справедливыми всюду, кроме самих точек приложения сосредоточенных поперечных сил.  [c.127]

В эти формулы не входят значения жесткостей стержня и пластины на растяжение — сжатие, поскольку при бесконечно малом изгибе прямого стержня и плоской пластины удлинения оси стержня или деформации срединной плоскости пластины имеют второй порядок малости. Жесткость стержня на растяжение-сжатие влияет только на закритическое поведение стержня (в том случае, когда концы стержня закреплены относительно продольных смещений) так же, как жесткость пластины на растяжение-сжатие влияет только на закритическое поведение пластины с закрепленным контуром.  [c.238]

Основанная на этих гипотезах теория. тонкостенных стержней открытого сечения рассматривалась рядом исследователей, но законченная форма ей была придана В. 3. Власовым [24]. Деформации тонкостенных кривых стержней в отличие от прямых сопровождаются существенными искажениями формы их сечения. Задача о чистом изгибе стержней с круговой осью описывается почти такими же уравнениями, как осесимметричная деформация оболочек,вращения. Для стержней малой кривизны эти уравнения могут быть упрощены. В 45 рассмотрены числовые методы расчета, а для стержней, составленных из цилиндрических и плоских стенок, приведены аналитические решения.  [c.408]

Для стержней с прямой осью, используя гипотезу плоских сечений, можно записать деформацию в сечении от растяжения и изгиба стержня как сумму деформаций постоянной по сечению ё и линейно зависящей от координаты ёд— 6t] (рис. 11)  [c.19]


При исследовании изгиба кривых стержней мы убедились, что элементарная теория, построенная на гипотезе плоских сечений, дает для напряжений весьма точные результаты. Поэтому в основание дальнейших выводов мы можем положить эту гипотезу и считать, что величина изгибающего момента пропорциональна изменению кривизны оси стержня в рассматриваемом сечении. Рассмотрим здесь случай, когда ось стержня весьма мало искривлена в одной из главных плоскостей стержня и все силы действуют в плоскости кривизны. Задача эта представляет практический интерес, так как ее решение позволит нам сделать некоторые выводы относительно влияния начального прогиба, всегда встречающегося при практическом выполнении прямых стержней, на обстоятельства изгиба стержня. При исследовании изгиба направим ось х по линии, соединяющей концы искривленной оси стержня, ось у расположим в плоскости кривизны. Обозначим через у ординаты начального искривления оси и через Ух — прогибы, обусловленные действием сил. При малых искривлениях мы можем как для начальной кривизны, так и для кривизны, получающейся после деформации, брать приближенные выражения. В таком случае изменение кривизны, вызванное действием сил, представляется так  [c.230]

В данной книге автор преследовал скромную цель — изложить значительно полнее, чем в [51], разработанную им точную теорию плоского изгиба упругих стержней и построенные на ее основе прикладные методы исследования тонких гибких деталей при больших упругих перемещениях. Интересно отметить, что при этом (удалось найти достаточно компактные общие формулы, которые являются едиными при сильном изгибе как прямых, так и криволинейных тонких деталей независимо от схем нагружения и наложенных связей.  [c.6]

Однако при исследовании изгиба стержней, пластинок и оболочек небольшой толщины вводимые там гипотезы плоских сечений и прямолинейных элементов позволяют вычислять упругую энергию, как работу изгибающих и крутящих моментов и поперечных сил. Например, при изгибе прямого стержня мы выделяем элемент его двумя близкими сечениями тогда, пренебрегая работой поперечной силы, будем иметь энергию изгиба этого элемента  [c.330]

Вернемся к рассмотренной выше задаче о плоском изгибе участка прямого стержня. В данной задаче можно, используя матрицу б в (1.16) и граничные условия (1.23), построить только функции Я и (х. Матрицы этих функций имеют вид  [c.10]

Влияние внецентренно приложенной силы. Предположим, что прямой стержень загружен двумя сжимающими силами Р, приложенными с эксцентриситетом во (рис. 16.20). Будем считать, что силы лежат в одной из главных плоскостей инерции и вызывают плоский изгиб стержня. Под действием внецентренно приложенных сил стержень искривится. Обозначим через у прогиб стержня в произвольном сечении х, а через f —стрелу прогиба в его середине. Дифференциальное уравнение изогнутой оси такого стержня имеет вид  [c.504]

Методом прямого математического моделирования решены задачи кручения и изгиба стержней, деформации струн, плоских и сферических волн, деформации упруговязких и упруго-пластичных материалов. Им успешно  [c.495]

НОРМАЛЬНЫЕ НАПРЯЖЕНИЯ ПРИ ПЛОСКОМ ИЗГИБЕ ПРЯМОГО СТЕРЖНЯ  [c.240]

Все формулы настоящего параграфа получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу, так как поперечные сечения не остаются плоскими, а искривляются продольные волокна взаимодействуют друг с другом, давят друг на друга и находятся, следовательно, не в линейном, а в плоском напряженном состоянии. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечениях кроме М действует еще Л/и Q, можно пользоваться формулами, выведенными для чистого изгиба. Погрешность при этом получается весьма незначительной.  [c.246]

Если плоскость действия изгибающего момента (силовая плоскость) проходит через одну из главных центральных осей поперечного сечения стержня, изгиб носит название простого или плоского (применяется также название прямой изгиб).  [c.132]


Настоятельно рекомендуем не ограничиваться рассмотрением потери устойчивости сжатого стержня, а привести еще несколько технически важных примеров. Скажем, показать потерю устойчивости при прямом изгибе, потерю устойчивости сжатого радиальными силами кольца или тонкой оболочки. Не все преподаватели хорошо рисуют на доске, поэтому следует заготовить специальные плакаты, на которых показана потеря устойчивости плоской формы изгиба и сжатого кольца. Затрата времени на эти дополнительные сведения очень невелика, а познавательный эффект значителен.  [c.190]

Нормальные напряжения при плоском изгибе прямого стержня 259  [c.259]

Выше определялись перемещения прямого стержня при растяжении, кручении и изгибе. Рассмотрим теперь общий случай нагружения, когда в поперечных сечениях могут возникать нормальные и поперечные силы, изгибающие и крутящие моменты одновременно. Кроме того, расширим круг рассматриваемых вопросов, полагая, что стержень может быть не только прямым, но и криволинейным или состоять из ряда участков, образующих плоскую или пространственную систему.  [c.225]

Теория изгиба пластин и оболочек основана на некоторых упрощающих предположениях. Первым из них является предположение о неизменности нормали, или так называемая гипотеза Кирхгофа. Принимается, что точки, расположенные на некоторой прямой, нормальной к срединной поверхности до деформации, после деформации снова образуют прямую, нормальную к деформированной поверхности. Такое предположение, как и гипотеза плоских сечений стержня, выражает тот факт, что угловыми деформациям оболочек можно пренебречь по сравнению с угловыми перемещениями. Это приемлемо в той мере, в какой толщина пластины мала по сравнению с другими ее размерами.  [c.407]

Усталость при плоском или при объемном напряженном состоянии общего вида экспериментально изучена недостаточно. Известно, однако, что теории статической прочности не могут быть непосредственно перенесены на прочность при переменных напряжениях (вибрационную прочность). Наиболее часто объемное напряженное состояние встречается при расчете прямых валов (длинных стержней), работающих одновременно на изгиб и на кручение. В этом частном случае принято находить коэффициент запаса для вала по формуле  [c.175]

Выше при выводе основного линеаризованного уравнения использовалась обычная теория изгиба балок, не учитывающая влияния деформаций сдвига, вызываемых поперечными силами. Рассмотрим вариант решения задачи устойчивости прямого стержня с учетом влияния деформаций сдвига. Воспользуемся расчетной схемой балки, предложенной С. П. Тимошенко. Согласно этой схеме плоские сечения, до деформации балки нормальные к ее оси, остаются плоскими и после изгиба балки, но перестают быть нормальными к ее изогнутой оси. Таким образом, в схеме С. П. Тимошенко положение каждого сечения деформированной балки определяется двумя независимыми величинами поперечным перемещением V и углом поворота сечения (рис. 3.22). Угол сдвига равен > ) = О — v, где v — угол поворота нормали к оси балки.  [c.109]

В предыдущих главах были подробно рассмотрены простейшие виды деформирования стержней растяжение и сжатие, кручение, плоский прямой изгиб. Настоящая глава посвящена решению задач о сложном сопротивлении стержней, представляющим собой комбинации простейших видов деформирования. Примерами сложного сопротивления являются растяжение с изгибом, изгиб в двух плоскостях, изгиб с кручением и т. д.  [c.235]

Рассмотрим плоский чистый изгиб прямого стержня. Если на его боковую поверхность нанести сетку в виде продольных и поперечных прямых (рис.8.2а), то при изгибе можно заметить следующее (рис.8.2б)  [c.108]

Все эти усовершенствованные методы расчетов напряженного, состояния в конструкциях судов критически освещены и развиты Петром Федоровичем Папковичем (1887—1946) в труде Строительная механика корабля . В первой его части излагаются вопросы подбора профилей, расчета статически неопределимых балок и плоских рам, составленных из прямых стержней (т. I, стр. 1—618, М., 1945) теория криволинейных рам и перекрестных связей (т. II, стр. 1—816, М.—Л., 1947). Содержание второй части составляют сложный изгиб и устойчивость стержней изгиб и устойчивость пластинок (стр. 1—960, Л., 1941). Эти три тома представляют собой самый полный и современный трактат по строительной механике корабля ).  [c.526]

При исследовании малых прогибов упругих стержней показано, как можно ввести поперечный сдвиг в дифференциальное уравнение равновесия этой теории. Излагается расчет балок на упругом основании и важная для судостроения задача, поставленная И. Г. Бубновым, о расчете перекрестных балок. Рассмотрен продольно-поперечный изгиб балок, приводится точное, а также приближенное, развитое автором, решение в тригонометрических рядах. Дается систематизированное изложение теории выпучивания прямых сплошных стержней, полос, круговых колец, двутавровых балок, устойчивости вала при кручении. Уточняется известная задача Ф. С. Ясинского о расчете на устойчивость пояса открытых мостов. Приводятся точные и приближенные решения этой задачи энергетическим методом, данные самим автором. Особенно ценны результаты, относящиеся к устойчивости плоской формы изгиба полос и двутавровых балок. Теория изгиба, кручения и устойчивости двутавровых балок была разработана автором в 1905—1906 годах и оказалась основополагающим исследованием для последующих разработок в области расчета и общей теории тонкостенных стержней. Автор приводит компактные формулы для расчета критических сил.  [c.6]


Поверхность напряжений в виде произведения двух степенных функций (16.84) была использована Дэвисом для практического анализа медленной ползучести при изгибе в условиях высоких температур в сравнительных испытаниях на изгиб и растяжение литых хромо-никелевых стержней ) Вначале определялся показатель п по результатам испытаний на растяжение с постоянной скоростью при температурах 1500 и 1652° Р, после чего призматические стержни были подвергнуты чистому изгибу при каждой из этих двух температур путем нагружения их постоянным изгибающим моментом, действовавшим в течение одной недели 2). При испытаниях определялся прогиб гю как функция времени t, после чего вычислялись деформации изгиба ползучести на равномерно согнутом рабочем участке стержня, имевшем постоянную кривизну, причем предполагалось, что поперечные сечения остаются плоскими ). Согласно теории пластического изгиба, основанной в данном случае на постулате о наличии поверхности напряжения в виде произведения двух степенных функций (16.84), деформации изгиба ползучести е" в крайних волокнах поперечных сечений должны давать в логарифмических координатах е", 1 семейство параллельных прямых, отвечающих различным постоянным значениям изгибающего момента М. Этот вывод удовлетворительно подтвердился проведенными испытаниями на изгиб, что говорит о возможности использования функции напряжений (16.74) для практического анализа поведения металлов ).  [c.663]

Исследуем устойчивость равновесия стержня при сколь угодно сильном изгибе (т. е. при больших перемещениях) в плоскости. При этом не ставится вопрос о возможности выхода упругой линии из своей плоскости. Следовательно, имеется в виду, что гибкий стержень представляет собой тонкую полоску такой ширины,, чтобы сохранялась плоская форма ее средней линии лри изгибе. Изогнутая тонкая полоска приобретает форму цилиндрической поверхности, при этом, однако, длина ее на порядок больше ширины, которая служит образующей цилиндрической поверхности. Такая полоска может быть первоначально прямой или криволинейной. Плоскость изгиба совпадает с плоскостью начальной кривизны средней линии полоски.  [c.86]

ПЛОСКОСТИ нагружения и плоскости перемещений. Вообще, если первоначально прямая ось стержня сгановится плоской кривой и плоскость перемещений совпадает с плоскостью нагружения, то такой случай деформации стержня называют плоским изгибом.  [c.146]

Чтобы получить общие уравнения изгиба кольца, используем гипотезы технической теории изгиба тонких стержней гипотезу плоских сечений и гипотезу ненадавливания слоев. Эти гипотезы (см. 1.5) применимы для расчета не только прямых стержней, но и стержней, у Которых размеры поперечного сечения малы по сравнению с радиусом кривизны оси.  [c.104]

Излагается нелинейная теория больших перемещений при плоском изгибе тонких упругих деталей, основанная на точном решении дифференциального уравнения упругой линии. На базе этой теории разрабатываются три метода исследования и расчета тонких упругих деталей метод эллиптических параметров с использованием числовых таблиц, метод упругих параметров с использованием специальных диаграмм и метод численного решения на ЭВМ. С помощью этих методов решается большое количество задач расчета сильного изгиба деталей в форме прямых и криволинейных упругих стержней. Выявляется специф,ика их поведения, которая не может быть исследована обычными методами строительной механики и теории изгиба стержней, излагаемой в курсах сопротивления материалов.  [c.2]

В первом разделе рассмотрены эпюры внутренних силовых факторов и растяжение-сжатие пряиолинейного стержня, во -втором - теория напряженного состояния, включая гипотезы прочности, кручение круглых ваюв. геометрические характеристики поперечных сечений в третьем - плоский прямой изгиб в четвертом -статически неопределимые системы и сложное сопротивление в пятом - устойчивость деформируемых систем, динамическое нагру-Ж ение, тонкостенные сосуды в шестом - плоские кривые стержни, толстостенные трубы и переменные напряжения.  [c.39]

Как и для случая изгиба прямого стержня, будем пользоваться гипотезой плоских сечений, подтверждаемой опытами и для кривых стержней. Будем предполагать, что при действии изгибающего момента сечения, перпендикулярные к оси, остаются плоскими и лишь поворачиваются одно относительно другого (рис. 344). Волокна нейтрального слоя i a—С Са сохранят свою прежнюю длину, а  [c.403]

Материальное поперечное сечение стержня не остается плоским. Так, прямая риска, нанесенная поперек грани, в процессе скручивания стержня изгибается (см. рис. 3, линия АсС). Наибольшее йскривлеиие сечения имеет место в витках, т. е. за пределами круга радиусом а. Искривление при этом охватывает и приграничную область этого круга. Но круг, очерченный радиусом, равным приблизительно 0,8 а, остается практически плоским  [c.229]

Предположим, что прямоугольная пластинка с опертыми краями сжимается силами = —Т , = —Т , равномерно распределенными по соответствующим сторонам пластинки (рис. 114). Увеличивая сжимающие силы, мы можем достигнуть предела, когда плоская форма равновесия перестает быть устойчивой и дальнейшее увеличение сжатия сопровон дается вьгаучиванием пластинки. Возникает явление, аналогичное явлению продольного изгиба в случае сжатия прямых стержней.  [c.423]


Смотреть страницы где упоминается термин Изгиб стержня прямой плоский : [c.128]    [c.208]    [c.327]    [c.240]    [c.359]    [c.332]    [c.320]    [c.327]   
Прикладная механика (1985) -- [ c.192 ]



ПОИСК



Изгиб Нормальные напряжения при плоском изгибе прямого стержня

Изгиб плоский

Изгиб прямой

Изгиб прямых стержней

Изгиб стержня

Изгиб стержня стержня

Плоский прямой изгиб

Стержень плоский



© 2025 Mash-xxl.info Реклама на сайте