Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Новикова эвольвентное

Понятия о зубчатом зацеплении М. Л. Новикова. Эвольвентная система зацепления получила в технике широкое распространение благодаря своим достоинствам, но она имеет и свои недостатки к котором относятся ограниченная нагрузочная способность поверхностных слоев зуба вследствие малых радиусов кривизны рабочих поверхностей зубьев (рис.  [c.179]

К недостаткам зацепления Новикова надо-отнести то, что коэффициент перекрытия зацепления меньше, чем в косозубых колесах с эвольвентным профилем. Коэффициент перекрытия  [c.474]


Критерии работоспособности и расчета. Без учета деформаций и приработки контакт зубьев в передаче Новикова осуществляется в точке, а не по линии, как у эвольвентных передач. Однако малая разность радиусов кривизны ri и Га выпуклых и вогнутых поверхностей зубьев, а также большие радиусы кривизны pi и ра косых зубьев в плоскости п—п (см. рис. 8.51) приводят к тому, что под нагрузкой  [c.167]

В отличие от эвольвентных передач контактная прочность передач с зацеплением Новикова зависит от числа зубьев г или при постоянном d от модуля т.  [c.170]

Рис. 4. Рабочие чертежи цилиндрических косозубых колес а — эвольвентного профиля (выполнение по правилам ГОСТ 2.403—68) б — для передачи Новикова с двумя линиями зацепления (выполнение по правилам ГОСТ 2.422 — 70). Рис. 4. <a href="/info/1263">Рабочие чертежи</a> <a href="/info/212410">цилиндрических косозубых</a> колес а — <a href="/info/12265">эвольвентного профиля</a> (выполнение по правилам ГОСТ 2.403—68) б — для передачи Новикова с двумя <a href="/info/136">линиями зацепления</a> (выполнение по правилам ГОСТ 2.422 — 70).
Передачи Новикова получили распространение в СССР и за рубежом в редукторах общего назначения, в судостроении и ряде других отраслей машиностроения. В планетарных передачах и коробках передач (скоростей) вследствие большей ширины, чем в прямозубых эвольвентных, их применение затруднено.  [c.203]

Прогибы валов мало сказываются на работе передач гибкой связью, поэтому валы ременных и цепных передач обычно не рассчитывают на жесткость. Упругие не ремещения валов зубчатых передач вызывают взаимный нак./юн колес и концентрацию нагрузки по длине зубьев, а также вызывают раздвигание осей, которое неблагоприятно для передач Новикова, а для эвольвентных приводит лишь к некоторому небольшому уменьшению продолжительности зацепления.  [c.330]

Нагрузочная способность передач с зацеплением Новикова по условиям контактной прочности примерно в два раза больше, чем цилиндрических эвольвентных тех же размеров. Дальнейшее увеличение нагрузочной способности достигается применением шевронных передач.  [c.373]

В зубчатом механизме с зацеплением Новикова основной закон зацепления, в отличие от эвольвентного, как уже указывалось ранее, соблюдается лишь в одном определенном сечении. Процесс зацепления начинается на одном торце и заканчивается на противоположном. Поэтому для непрерывности вращения ведомого колеса прежде, чем точка контакта данной пары зубьев дойдет до противоположного торца, в контакт должна вступить последующая пара зубьев.  [c.125]


Расчет передач с зацеплением Новикова ведется аналогично расчету передач с эвольвентным зацеплением, но естественно, с учетом их особенностей (см. [4, И, 141).  [c.471]

Большинство редукторов общего назначения изготовляют с косозубыми колесами, эвольвентным зацеплением и зацеплением Новикова, которые по сравнению с прямозубыми обладают большими нагрузочной способностью и быстроходностью.  [c.490]

Зубья колес Новикова отличаются от зубьев эвольвентных косозубых колес формой сечений. Однако и те и другие представляют собой винтовые тела. Как и в косозубом эвольвентном зацеплении, в зацеплении Новикова пользуются понятиями торцового шага ts, нормального шага 4 и осевого шага 4- Здесь удобно пользоваться понятием угла р наклона зуба, аналогичным такому же понятию , для эвольвентных колес. В рассматриваемом случае угол р наклона зуба принимают в пределах от 10 до 30°.  [c.72]

Линией зацепления зубьев будет линия касания делительных цилиндров, вдоль которой перемещается точка контакта (рис. 20.21). Однако в действительности из-за упругой контактной деформации зубьев под нагрузкой их взаимодействие происходит через площадку, размеры которой быстро увеличиваются в результате приработки (см. рис. 20.21, пятно контакта зубьев после приработки заштриховано). Поэтому передача Новикова имеет высокую нагрузочную способность (в 1,5 раза больше эвольвентной передачи при твердости зубьев НВ < 320 и окружной скорости г < 12 м/с).  [c.338]

Новикова 321, 337 цевочное 321 циклоидальное 321 эвольвентное 321 Звено гибкое 16 — твердое 16  [c.564]

По форме профиля зуба различают передачи эвольвентные с зацеплением М. Л. Новикова, циклоидальные. В машиностроении преимущественное распространение получил эвольвент-ный профиль зуба, предложенный Л. Эйлером в 1760 г. М. Л. Новиков в 1954 г. предложил принципиально новый профиль зуба — круговой (см. 9.15).  [c.151]

Для повышения контактной прочности, а следовательно, несущей способности зубчатых передач в 1954 г. М. Л. Новиковым было разработано новое зубчатое зацепление, в котором первоначальный линейный контакт (линейное эвольвентное зацепление) заменен точным зацеплением, в котором профили зубьев колес в торцовом сечении очерчены дугами окружности весьма близких радиусов (рис. 9.40). Зуб  [c.218]

Передачи с зацеплением Новикова стандартизованы. Расчет их ведут аналогично расчету передач с эвольвентным зацеплением с учетом их особенностей [10]. Результаты расчета показали, что габариты передач Новикова по сравнению с эвольвент-ными на 20...25% меньше при одинаковом нагружении, т. е. они более компактны и допускают большие передаточные числа.  [c.221]

Цилиндрическая передача Новикова Г Внешнее эвольвентное зацепление, несмотря на ряд достоинств (простота изготовления, нечувствительность к изменению межосевого расстояния и др.), имеет существенный для тяжело нагруженных передач недостаток, заключающийся в том, что зубья касаются выпуклыми поверхностями. Для уменьшения контактных напряжений надо, чтобы выпуклая поверхность одного зуба касалась вогнутой поверхности другого зуба. Такое касание имеют эвольвентные зубья при внутреннем зацеплении и зубья, профили которых очерчены по гипоциклоиде и эпициклоиде (циклоидное зацепление). Еще более благоприятный контакт получается у зубьев, профили которых по  [c.197]

Теоретические расчеты и практические испытания показали, что в некоторых случаях, несмотря на точечный контакт передачи с зацеплением Новикова при тех же габаритах могут передавать усилия в 1,5-ь 2 раза больше, чем эвольвентные потери на трение и износ зубьев также значительно меньше.  [c.96]

Основные геометрические размеры. Некоторые размеры элементов колес передачи Новикова определяются по тем же формулам, что и для эвольвентных передач. Вывод формул (табл. 3.19), связанный с особенностями передачи Новикова (рис. 3.73), не представляет затруднений.  [c.300]


В зависимости от формы профиля 31/ба передачи бывают эвольвентные, с зацеплением Новикова, циклоидальные. В современном машиностроении широко применяют эвольвентное зацепление .  [c.101]

Расчет передач с зацеплением Новикова ведут аналогично расчету передач с эвольвентным зацеплением, но с учетом их особенностей.  [c.162]

Достоинства и недостатки зубчатой передачи с зацеплением Новикова по сравнению с зубчатой передачей с эвольвентным зацеплением.  [c.162]

Увеличение площади контакта при трении качения связано с отысканием новых конструктивных форм сопряженных тел, когда создаются условия для более тесного касания поверхностей и для увеличения зоны контакта при их деформации. Например, переход от обычных эвольвентных передач к зацеплению Новикова увеличивает зону контакта, что способствует повышению износостойкости и увеличивает несущую способность передачи.  [c.399]

Для передач Новикова используют те же материалы, что и для эвольвентных. Преимущественное применение получили материалы с твердостью рабочих поверхностей НВ < 350.  [c.275]

В силовых передачах применяются главным образом зубчатые колеса с эвольвентным профилем зубьев, который был предложен в 1754 г. акад. Л. Эйлером. Передачи с эвольвентным зацеплением подвергались различным усовершенствованиям путем корригирования профиля зубьев, повышения точности их изготовления, применения упрочнения зубьев и т. п. Однако эвольвентный профиль зубьев не может удовлетворить всем современным требованиям, предъявляемым к зубчатым передачам. В 1955 г. М. Л. Новиков показал, что для очертания зубьев может применяться бесчисленное количество разновидностей поверхностей, и предложил новый, весьма перспективный, профиль зубчатых передач, имеющий в торцевом сечении очертание дугами окружностей. В отличие от эвольвентного профиль зубьев одного из парных зубчатых колес Новикова является выпуклым, а другого — вогнутым (рис. 15.1, г). Это дает возможность в 2,5—3 раза по-  [c.272]

Свойства 5—7 определяют недостатки передач эвольвентного зацепления по сравнению с передачами циклоидального зацепления и зацепления Новикова.  [c.286]

По форме профиля зуба различают эсольвентные и круговые. Наиболее распространен эвольвентный профиль зуба, предложенный Эйлером в 1760 г. Он обладает рядом существенных технологических и эксплуатационных преимуществ. Круговой профиль зуба предложен М, Л. Новиковым в 1954 г.  [c.97]

Оценка передачи. Основное достоинство передачи Новикова — повышенная нагрузочная способность по контактной прочности. При Я НВЗбО, она примерно в 1,5... 1,7 раза больше, чем у аналогичной по размерам и материалу эвольвентной косозубой передачи.  [c.167]

Материалы. Для передач Новикова применяют те же материалы, что и для эвольвентных, табл. 8.8. Наиболее распространены материалы с твердостью рабочих поверхностей НВ350, Напомним (см. 8.11), что применение материалов с высокой твердостью поверхности (цементация, т. в. ч., азотирование и пр.) в эвольвентных передачах направлено в основном на повышение контактной проч1юсти я сближение ее с прочностью по изгибу. В передачах Новикова такое сближение достигается путем суш,ественного увеличения площади пятен контакта. Поэтому применение материалов с высокой твердостью поверхности здесь менее эффективно. Уменьшая способность к приработке, они не приводят к существенному повышению нагрузочной способности. Ограничением становится прочность по изгибу.  [c.169]

Наряду с безусловными достоинствами, передачи Новикова имеют недостатки. Основной недостаток — это повышенная чувствительность к перекосам и изменению межосевого расстояния, которая может появиться вследствие погрешности изготовления, неточности сборки или упругих деформаций передачи. Кроме того, они уступают эвольвентным передачам по нагрузочной способности, лимитируемой изломной прочностью зубьев, поэтому их можно применять лишь при отсутствии перегрузок и пиковых нагрузок.  [c.343]

Передачи Новикова обладают повышенной контактной несущей способностью по сравнению с эвольвентными в 1,5... 2 раза. Это вызвано, во-первых, касанием выпуклой поверхности по вогнутой и соответственно большой площадкой контакта и, во-вторых, повышенной удельной несущей способностью масляного клина между зубьями. Последнее связано с тем, что скорость качения направлена перпендикулярно к линии контакта и в несколько раз превышает таковую в эвольвентных rtepe-дачах.  [c.203]

По форме профиля зуба различают передачи ввольвентмые и не-эвольвентные, например передачи с зацеплением М. Л. Новикова, предложенные в 1954 г. (см. 3,43), и циклоидальные" .  [c.330]

Нагрузочная способность передач с эвольвентным зацеплением ограничена малыми радиусами кривизны профилей зубьев и, следовательно, значительными контактными напряжениями. Повышение контактной прочности достигается применением круговинтового зацепления М. Л. Новикова, в котором профили зубьев колес в торцовом сечении ограничены дугами окружностей близких радиусов (рис. 3.114). Зуб шестерни 2 делается выпуклым, а зуб колеса 1 — вогнутым. Линия зацепления расположена параллельно осям колес, и поэтому площадка контакта зубьев здесь перемещается не по профилю зубьев, как в эвольвентной передаче, а вдоль зубьев. Непрерывность передачи движения обеспечивается винтовой формой зубьев. Поэтому зацепление Новикова может быть только косозубым. Практически угол р = 10...30°.  [c.372]

Цилиндрические зубчатые колеса с зацеплением Новикова изготовляются на станках, предназначенных для нарезания зубчатых колес с эвольвентным зацеплением. Как и эвольвентное зацепление, выпукло-вогнутое круговинтовое зацепление можно получить методом обкатки. Но так как зубья в заполюсном зацеплении на одном колесе должны быть выпуклыми, а на другом — вогнутыми, то производящих реек должно быть две одна — с вогнутыми, другая — с выпуклыми зубьями. Нарезание зубьев на шестерне и колесе с дозаполюсным зацеплением осуществляется одним инструментом, соответствующим исходному контуру по ГОСТ 15023—76, что является одним из его преимуществ.  [c.125]


Для кол-ес с косыми зубьями (см. ниже) в последние годы начинают применять зацепление, в котором боковые профили зубьев очерчены дугами окружностей или близкими к ним плавными кривыми. Это зацепление называют зацеплением Новикова по имени ученого М. Л. Новикова (1915—1957), предложившего зубчатые колеса с круговинтовыми зубьями. Указанное зацепление обладает некоторыми преимуществами по сравнению с эвольвентным, в частности повышенной контактной прочностью.  [c.354]

В цилиндрической передаче с зацеплением Новикова линия зацепления расиоложена параллельно q ям зубчатых колес и поэтому площадка контакта зубьев здесь перемещается не по профилю зубьев, как в эвольвентном соединении, а вдоль зубьев. Следовательно, коэффициент перекрытия равен нулю е = О и, соответственно, зацепление с данным профилем может быть только косозубым с углом наклона зубьев р = 10...30°. При взаимном перекатывании зубьев  [c.471]

Линия зацепления изображенной на рис. 7.32 передачи будет проходить через точку К и располагаться параллельно осям колес, а точка контакта зубьев будет перемещаться по этой линии, а не по общей нормали NN, как в эвольвентном зацеплении. Поэтому торцовое перекрытие, а также геометрическое ско.гъжение зубьев в передаче Новикова теоретически отсутствуют-, плавность работы обеспечивается за счет осевого перекрытия Угол наклона зубьев обычно берется в пределах р = 10... 24  [c.151]

В отличие от эвольвентного, круговинтовое зацепление Новикова является точечным. В этом зацеплении геометрическое касание происходит не по линии, а в точке. Непрерывное зацепление зубьев осуществляется благодаря тому, что геометрические места точек касания образуют винтовые линии и (рис. 45). В данном положении точки ах и Са совпадают в точке а1а. Эти геометрические места называются линиями контактных точек.  [c.70]

В зацеплении Новикова первоначальный контакт зубьев происходит в точке, и зубья касаются только в момент прохождения профилей через эту точку, а непрерывность передачи движения обеспечивается винтовой формой зубьев. Поэтому зацепление Новикова может быть только косозубым. Практически угол наклона зубьев р=10...22°. Положение точки контакта зубьев характеризуется ее смещением от полюса, а линия зацепления пп расположена параллельно осям колес. При приложении нагрузки в результате упругой деформации точечный контакт переходит в контакт по малой площадке (рис. 9.41), которая, перемещаясь (показано стрелкой А) вдоль зубьев (а не по профилю зубьев, как в эвольвентной передаче), постепенно возрастает, достигая максимального значения на среднем участке ширины колес. Это повьпиает не только нагрузочную способность передачи по контактным напряжениям, но и создает благоприятные условия для образования устойчивого  [c.219]

Каждая из винтовых линий МдЛ1 и М М является геометрическим местом точек, которыми в процессе зацепления зуб одного колеса касается последовательно зуба другого колеса. Эти линии называют контактными. В любом сечении цилиндров плоскостью, перпендикулярной к их осям, находится только одна точка зацепления (точка перес-ечения плоскости с линией зацепления МоМ), в которой в некоторый момент времени происходит совпадение двух точек, принадлежащих различным контактным линиям, т. е. происходит касание сопряженных поверхностей зубьев. Поэтому зацепление М. Л. Новикова называют точечным. Таким образом, в отличие от обычных эвольвентных косозубых колес здесь образуется не поле зацепления, а линия зацепления. Кроме точки зацепления в упомянутой плоскости находится также мгновенный центр относительного вращения, соответствующий этой плоскости. Мгновенный центр перемещается по оси Р Р от точки Ра к точке Р с такой же скоростью, с какой точка зацепления перемещается по линии зацепления М М, и описывает на равномерно вращающихся начальных цилиндрах винтовые линии РцР и Р Р. Точки контактных линий, совпадающие в точке зацепления, имеют различные скорости. Например, скорость Vmi точки Ml, принадлежащей первой контактной линии, равна произведению OiM fflj и перпендикулярна к 0,уИ, а скорость Vm, точки М , принадлежащей второй контактной линии, равна произведению О М 2 и перпендикулярна к О М. Относительная скорость Vm.m, этих точек, являющаяся скоростью скольжения контактных линий одной по другой, связана со скоростями Vm, и Vm, векторным уравнением  [c.226]

Следовательно, коэффициент перекрытия v зацепления меньше, чем в косозубых колесах с эвольвентным профилем, что надо отнести к недостаткггм зацепления М. Л. Новикова,  [c.230]

Следовательно, коэффициент перекрытия г-, зацепления меньше, чем в косозубык колесах с эвольвентным профилем, что надо отнести к недостаткам зацепления М. JL Новикова,  [c.271]

Внешнее эвольвентное зацепление, несмотря на ряд достоинств (простота изготовления, нечувствительность к изменению межосевого расстояния и др.), имеет существенный для тяжело нагруженных передач недостаток, заключающийся в том, что зубья касаются выпуклыми поверхностями. Для уменьшения контактных напряжений надо, чтобы выпуклая поверхность одного зуба касалась вогнутой поверхности другого зуба. Такое касание имеют эвольвентные зубья при внутреннем зацеплении и зубья, профили которых очерчены по гипоциклоиде и эпициклоиде (циклоидное зацепление). Еще более благоприятный контакт получается у зубьев, профили которых по предложению М. Л. Новикова в торцовой плоскости очерчены по дугам окружностей с почти равными радиусами (рис. 156). В цилиндрической передаче эти зубья делаются винтовыми, и потому полученное зацепление называют иногда круговинтовым. Рассматриваемое зацепление — точечное, и в каждой торцовой плоскости зубья касаются только в одной точке К. Непрерывность зацепления обеспечивается тем, что зубья выполнены винтовыми. Поверхности зубьев рассматриваемого зацепления должны быть образованы так, чтобы точка контакта К перемещалась параллельно осям вращения колес.  [c.445]

Профиль зубчатого зацепления Новикова образуется дугами ркружностей (рис. 15.7). Наличие контакта выпуклой поверхности с вогнутой создает благоприятные предпосылки для создания более устойчивого масляного слоя в зоне контакта зубьев по сравнению с эвольвентным профилем.  [c.279]

Линия зацепления круговинтовых колес зацепления Новикова в простейшем случае направлена параллельно оси вращения колес. При вращении колес зубья своими круговинтовыми поверхностями (рис. 15.11) перекатываются друг по другу так, что контакт их осуществляется по линии профиля. На рис. 15.11, а изображены положения эвольвентного профиля зуба одного из зацепляющихся колес в мгновение начала и конца зацепления. Предположим, что колесо 1 является ведущим и вращается со скоростью ft>i в направлении, обозначенном на чертеже. При этом изображенный профиль зуба начинает касаться соответствующего профиля зуба другого колеса в точке а, являющейся точкой пересечения нормали NN с окружностью выступов колеса 2. Зацеп-  [c.291]


Смотреть страницы где упоминается термин Новикова эвольвентное : [c.340]    [c.220]    [c.274]   
Прикладная механика (1985) -- [ c.321 ]



ПОИСК



Зацепление Новикова эвольвентное

Новик

Новиков



© 2025 Mash-xxl.info Реклама на сайте