Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испарение матрицы

Испарение матрицы 24 Исходные вещества для получения нестабильных частиц 64, 73  [c.168]

Учитывая представленные на рис. 4.4, б и 4.8 результаты для J к 1 к принимая, что область испарения составляет половину длины проницаемой матрицы, можно приближенно оценить величины  [c.96]

Заполнение канала пористым высокотеплопроводным материапом вызывает качественное изменение механизма переноса теплоты и структуры потока теплоносителя также и при фазовых превращениях. Здесь перенос теплоты теплопроводностью от стенки через пористый каркас (или в обратном направлении) исключает высокое термическое сопротивление у стенки, создаваемое сплошной паровой пленкой при испарении теплоносителя или сплошной пленкой конденсата при конденсации потока пара в гладких каналах. Это позволяет полностью завершить фаг зовое превращение потока теплоносителя при высокой интенсивности теплообмена. Кроме того, капиллярные силы обеспечивают равномерную насыщенность проницаемой матрицы жидкостью поперек канала.  [c.117]


Рис. 5.15. Физическая модель процесса испарения потока в канале с проницаемым высокотеплопроводным заполнителем и распределение избыточной температуры матрицы = Т - tj поперек канала при tJ (1) = Тда- tj = 100 ° С для значений параметра 7 Рис. 5.15. <a href="/info/21490">Физическая модель</a> процесса испарения потока в канале с проницаемым высокотеплопроводным заполнителем и распределение <a href="/info/69975">избыточной температуры</a> матрицы = Т - tj поперек канала при tJ (1) = Тда- tj = 100 ° С для значений параметра 7
При конденсации пара на поверхности микропленки теплота конденсации теплопроводностью через микропленку передается проницаемой матрице, а затем также теплопроводностью через каркас — стенкам канала. Вследствие чрезвычайно развитой поверхности раздела фаз пар — жидкость внутри пористой структуры и малой толщины микропленки, особенно в начале области конденсации, объемная интенсивность передачи теплоты от пара к пористому материалу очень велика. Интересно отметить, что процессы конденсации потока пара и испарения потока теплоносителя внутри каналов с проницаемым заполнителем имеют одинаковый физический механизм и отличаются только направлением.  [c.121]

Сопротивление в исследуемом процессе. При анализе теплообмена при испарении или конденсации потоков теплоносителя внутри каналов с пористым высокотеплопроводным заполнителем было отмечено, что паровая фаза смеси находится в состоянии термодинамического равновесия и имеет температуру, равную локальной температуре насыщения. Причем fj используется как отправная величина для расчета избыточной температуры проницаемой матрицы i = Т -1 . Следовательно, для определения значения в каждом поперечном сечении канала необходимо уметь рассчитать распределение давления в двухфазном потоке вдоль канала. Эта задача также представляет интерес и для расчета полного перепада давлений на пористом заполнителе.  [c.122]

Для результатов, полученных при форсированном нагреве высокоскоростным потоком газа (см. рис. 6.3), температура Т2 в диапазоне больших расходов охладителя постепенно возрастает и приближается к температуре насыщения, что соответствует испарению охладителя с поверхности жидкостной пленки. При расходе G = 2 кг/ (м с) температу ра Т2 скачкообразно повышается до s 530 °С и затем остается постоянной при значительном снижении расхода охладителя. Это соответствует паровому режиму охлаждения, когда начало области испарения сначала резко углубляется внутрь проницаемой матрицы, смещаясь затем постепенно вглубь ее при уменьшении расхода охладителя. При этом из стенки  [c.130]


Физическая природа неустойчивости объясняется тем, что сопротивление матрицы потоку пара во много раз больше, чем потоку жидкости. Поэтому незначительное изменение положения области испарения внутри пористой стенки вызывает заметное изменение гидравлического сопротивления, что при постоянном перепаде давлений на стенке приводит к существенному изменению расхода охладителя. Так продолжается до тех пор, пока граница зоны испарения не выходит за пределы проницаемой матрицы.  [c.132]

Первые работы по теоретическому исследованию процесса очень похожи по постановке задачи и полученным результатам. В них использованы одинаковые аналитические модели, при разработке которых приняты допущения о локальном тепловом равновесии Т = t между охладителем и матрицей и о малой толщине К - L = О области испарения (модели даются в сравнении с моделью, изображенной на рис. 6.1).  [c.133]

Следующим шагом бьш учет разности температур между матрицей и охладителем Т Ф t) и конечной протяженности зоны испарения (К --L ФО). Недостатком этих работ является отсутствие обоснованных данных по интенсивности теплообмена в области испарения.  [c.133]

Будем решать одномерную задачу распространения теплоты в пористой стенке (см. рис. 6.1) при допущениях о бесконечно малой толщине зоны испарения К - L -> О (поверхность испарения с координатой L) и о локальном тепловом равновесии T = t между матрицей и охладителем. Распределение температуры на паровом участке течения охладителя (i < Z < б) описывается уравнением  [c.157]

Экспериментальное исследование испарительного жидкостного охлаждения пористого металлокерамического твэла (результаты приводятся ниже), показало, что распределение температуры внутри него существенно зависит от режима истечения охладителя (рис. 7.1). Вариант б соответствует истечению двухфазной смеси, а — перегретого пара. Причем если в первом случае выполняется условие адиабатичности в начале зоны испарения (максимум температуры Т пористого материала при Z =L), то во втором имеет место монотонное повышение температуры проницаемой матрицы как в начале Z = , так и в конце Z = К зоны испарения и условия адиабатичности здесь не выполняются.  [c.160]

На рис. 7.4 приведены примеры распределения температуры проницаемой матрицы в зоне испарения для тех же условий. При этом для точек I-III соответственно к - I =0,170 0,081 0,030 О (к) = 5,39 16 56 С.  [c.164]

При исследовании процесса легирования материала в условиях лазерного облучения изучались различные способы предварительного нанесения слоя легирующего элемента на матрицу накатка фольги из легирующего материала, электролитическое осаждение легирующего материала, детонационное покрытие, плазменное напыление легирующих элементов, нанесение порошка или специальной обмазки и др. [16]. Наиболее значительным недостатком первого способа нанесения слоя легирующего элемента является высокое тепловое сопротивление между легирующим элементом и матрицей, препятствующее расплавлению матричного материала и приводящее к испарению слоя легирующего элемента. В меньшей мере этот недостаток присущ двум следующим указанным способам.  [c.32]

Отличительной особенностью газофазных, химических или электрохимических методов получения композиционных материалов является отсутствие или незначительное температурное или механическое воздействие на волокна в процессе совмещения их с матрицей а также возможность формирования изделий или полуфабрикатов сложной конфигурации. Методы испарения и конденсации, катодное распыление и другие методы, не нашедшие широкого применения, в настояш,ей книге не рассматриваются.  [c.167]

В теплоизоляциях с ограниченным временем работы могут использоваться подвергающиеся тепловому разрушению композиционные монолитные материалы, состоящие, как правило, из отдельных элементов термостойкого наполнителя (зерен, чешуек, волокон, слоев ткани, пленок), заключенных в матрицу из органического или неорганического связующего. Указанные композиционные материалы обычно анизотропны по отношению к свойству теплопроводности. Тепловое воздействие на поверхность такой теплоизоляции вызывает в композиционном материале сложные физико-химические процессы, сопровождаемые плавлением, испарением, газификацией и уносом вещества и связанные со значительным поглощением теплоты, что в основном обеспечивает защиту теплоизолируемого объекта от указанного воздействия. Этот тип термоизоляции относят к классу тепловой защиты [4].  [c.8]


В предыдущей главе мы рассмотрели принципиальные вопросы, возникающие при изучении единственного атома, взаимодействующего с монохроматической световой волной и излучающего спонтанно и вынужденно фотоны. При этом остался в тени важный для практики вопрос о том, каким образом может быть приготовлена система, состоящая только из одного атома. Если атомы исследуемого вещества находятся в газовой фазе, то задача уединения единственного атома является решаемой, но достаточно сложной технической проблемой. Однако исследования в газовой фазе становятся даже в принципе невозможными для сложных органических молекул, так как многие из них уже при небольшом нагревании, предшествующем испарению, распадаются. Поэтому в последние несколько лет успешно развиваются методы исследования единичных молекул, внедренных в твердые матрицы, охлажденные до гелиевых и более низких температур [18-20]. В этом случае перед нами стоит проблема исследования поглощения и излучения света единственным примесным центром. Однако оптические электроны примесной молекулы или атома взаимодействуют не только с электромагнитным полем, но и с колебаниями атомов матрицы (фононами). Это электрон-фононное взаимодействие приводит к рождению и уничтожению фононов в процессе оптического перехода в примеси. Оно актуально даже при сверхнизких температурах, потому что процессы рождения фононов имеют место даже при абсолютном нуле. Поэтому в теорию, изложенную в предыдущей главе, необходимо включить взаимодействие оптических электронов примесного центра с фононами. Фононы и другие низкочастотные возбуждения твердой матрицы рассматриваются в данной главе.  [c.53]

Устройства вычислительной техники из ферритов изготавливают в виде тонких пленок или слоистых матриц, что обеспечивает их малые габариты и высокое быстродействие. Тонкие пленки получают испарением в вакууме или катодным распылением с осаждением на подложке.  [c.548]

Метод вакуумно-дугового испарения широко применяется в отечественной инструментальной промышленности. Этому способствует высокая скорость нанесения покрытий, хорошая прочность адгезионной связи покрытия с инструментальной матрицей, возможность управления процессом нанесения и формирования композиционных покрытий с требуемым комплексом свойств. В то же время этот способ имеет существенный недостаток - наличие капельной фазы в покрытии, образующейся в результате поглощения газов металлами с частичным образованием жидкого раствора и неравномерности микро- и макроструктуры распыляемого катода. Поэтому выбор технологических режимов нанесения покрытий производится исходя из условий минимального образования капельной фазы.  [c.101]

В условиях единичного производства может найти применение формообразование днищ энергией испаряющегося сжиженного газа (например, рлота) ло схеме "штамповка газовым пуансоном по жесткой матрице". При мгновенном превращении жку кого азота в газо-образнай в замкнутом объеме в нем можно развить давление до 800 Ша. Скорость нарастания давления при этом зависит от интенсивности его преобразования. Если распыленный жидкий азот впрыснуть в воду, то происходит мгновенное испарение азота, сопровождающееся появлением ударной волны. Работа с жвдким азотом абсолютно безопасна, а в экономическом отношении не энергоемка энергия при испарении 3 л сжиженного азота эквивалента энергии, затрачиваемой на одш ход пресса усилием 1000 кН при полной его нагрузке.  [c.66]

Для разработки аналитических моделей и расчета гидродинамических и теплообменных характеристик парожидкостного потока внутри проницаемой матрицы нужна информация о его структуре. Но рассматриваемый процесс отличается тем, что не позволяет выполнить визуальное или лю е другое исследование структуры двухфазного потока непосредственно внутри пористого материала. Поэтому единственным способом для получения необходимых сведений является наблюдение картины истечения из пористого материала испаряющегося в нем теплоносителя. Такие исследования проведены при адиабатическом дросселировании предварительно нагретой воды через пористые металлокерамичео кие образцы и при испарении воды внутри образцов с различными видами подвода теплоты - лучистым внешним потоком и при объемном тепловыделении за счет омического нагрева. Одновременно с визуальным наблюдением измеряли распределение температуры материала и изменение давления в потоке внутри образца (последнее измеряли только в первом случае).  [c.77]

Особенно интересные результаты получены при измерении распределения температуры по толщине пористого образца с объемным тепловыделением и при визуальном наблюдении картины истечения двухфа> ной смеси на его внешней поверхности. В таких режимах профиль температуры имеет максимум в начале области испарения. После него в направлении к внешней поверхности, несмотря на интенсивный подвод теплоты от матрицы к двухфазному потоку, температура последнего, а вместе с ней и температура матрицы в зоне испарения понижается вслед за температурой насыщения паровой фазы испаряющейся смеси. В этой зоне на рассмотренный ранее процесс дросселирования двухфазной смеси накладывается интенсивный подвод теплоты от каркаса. Полученные результаты позволяют сделать вывод о том, что вплоть до достигнутой плотности объемного тепловыделения = 14 10 Вт/м между порис-80  [c.80]

Изложенный механизм справедлив для случая небольшой разности температур между пористым материалом и паровой фазой смеси. Совершенно по-другому испарение потока завершается в тех случаях, когда вследствие подвода теплоты теплопроводностью в область испарения температура пористой матрицы быстро возрастает. В этом случае в месте, где температура проницаемого каркаса достигает определенной величины Г, соответствующей предельно достижимому перегреву жид кости, теплоноситель не может больше существовать в жидкостной фазе на поверхности частиц, жидкость перестает смачивать материал и микропленка свертывается в микрокапли. В итоге происходит резкое уменьшение интенсивности теплообмена при смене режима испарения микропленки на режим конвективного теплообмена дисперсного потока перегретого пара с мельчайшими каш1ями. Здесь микрокапли при столкновении с поверхностью каркаса уже не растекаются по ней, вследствие чего испарение их затруднено.  [c.82]


Интенсивность внутрнпорового теплообмена. Одной из основных величин, определяющих испарение потока теплоносителя внутри пористых металлов, является интенсивность Ау объемного теплообмена. Выполним приближенную оценку этой величины. Из приведенного ранее физического механизма процесса следует, что основным режимом внутрнпорового теплообмена при движении двухфазного потока в нагреваемых матрицах является передача теплоты от пористого каркаса с температурой Т теплопроводностью через жидкостную микропленку к ее поверхности, имеющей температуру, равную температуре насыщения, где теплота затрачивается на испарение жидкости.  [c.85]

При учете потерь давления в двухфазном потоке внутри каналов потоянного сечения обычных размеров существенной является составляющая G dvldZ (на ускорение потока вследствие уменьшения плотности смеси при испарении). Определим относительную величину этой составляющей для испаряющейся смеси в пористых матрицах. Для этого рассчитаем ее величину при полном испарении потока  [c.95]

С учетом приведенных в гл. 4 сведений о структуре и теплообмене двухфазного потока внутри проницаемых матриц можно представить следующий механизм процесса. После начала парообразования пар течет сначала отдельными микроструями, которые постепенно заполняют все более мелкие поровые каналы. Жидкость движется в виде постепенно утоняющейся микропленки, которая обволакивает частицы материала и заполняет все сужения и тупиковые поры. Под действием капиллярных сил жидкость в пленке перетекает поперек канала. За счет этого обеспечивается равномерная насыщенность пористой структуры. Такой режим сохраняется до полного испарения всего теплоносителя.  [c.117]

Принимая реальные величины Т - ( = 10 °С, X = 50 Вт/(м К), йу = = 5-10 Вт/ (м К), получаем q = 5 10 Вт/м , что значительно больше максимального теплового потока = 1,2 10 Вт/м , соответствующего кризису кипения первого рода для воды при атмосферном давлении. Кроме того, в гладких каналах критическое значение плотности теплового потока резко уменьшается с увеличением массового паросодер-жания потока, тогда как испарение потока внутри проницаемой матрицы может быть полностью завершено при тепловой нагрузке, близкой к предельной.  [c.120]

Аналогично рассчитывается массовое паросодержание потока и при конденсации пара внутри охлаждаемого канала с пористым заполнителем. После этого вследствие полной обратимости физического механизма процессов испарения и конденсации потоков внутри канала с проницаемой матрицей расчет изменения давления вдоль конденсирующегося потока может быть произведен с помощью соотношений, приведенных в разд. 4.3. Необходимо учесть только обратное изменение массового па-росодержания вдоль канала.  [c.123]

Наиболее нежелательным и опасным явлением в системе испарительного транспирационного охлаждения является неустойчивость процесса, которая не позволяет стабилизировать положение области испарения внутри проницаемой матрицы. Небольшие колебания параметров приводят к неконтролируемому продвижению фронта зоны испарения с внешней поверхности пористой стенки на внутреннюю, сопровождаемому сме-  [c.131]

Однако в некоторых случаях (при очень высоких внешних тепловых потоках) температура проницаемой матрицы очень быстро возрастает в области испарения и достигает в сечении Z величины Т перегрева жидкости до завершения ее полного испарения. После этого жидкость перестает смачивать пористый материал, микропленка свертывается в микрокапли, и происходит резкая смена режима течения двухфазного потока с высокоинтенсивным теплообменом при испарении микропленки на режиме движения во второй зоне Z K дисперсного потока перегретого пара с микрокаплями жидкости. Этот режим отличается относительно низкой интенсивностью внутрипорового конвективного теплообмена. Нужно отметить, что именно такому характеру истечения парокапельного потока из стенки при высокой температуре ее внешней поверхности, значительно превышающей величину Г, соответствуют приведенные на рис. 6.3 экспериментальные данные.  [c.134]

Температурное поле матрицы и паровой фазы потока в области испарения L < Z < К определяется системами уравнений отдельно для каждой из зон, в том числе для первой зоныL[c.134]

Рис. 6.7. Изменение температуры проницаемой матрицы в области испарения (а) и массового паросодержання двухфазного потока в ней (6) при параметрах системы, соответствующих точкам 1-II1 на рис. 6.6 Рис. 6.7. <a href="/info/46047">Изменение температуры</a> проницаемой матрицы в области испарения (а) и <a href="/info/302706">массового паросодержання</a> <a href="/info/20575">двухфазного потока</a> в ней (6) при <a href="/info/43042">параметрах системы</a>, соответствующих точкам 1-II1 на рис. 6.6
Штрихпунктирные линии К приближенно представляют зависимость температуры в конце зоны испарения от координаты. Участки температурных зависимостей между линиями L и. К показьшают распределение температуры проницаемой матрицы и охладителя в области испарения. В 146  [c.146]

С повышением температуры вытекающего перегретого пара и температуры пористого каркаса на паровом участке дпина области испарения практически не изменяется (см. рис. 7.3), но вся она постепенно перемещается к внутренней поверхности элемента. Интересно отметить, что при Гз (5) = 100 °С, когда испарение охладителя завершается на внешней поверхности твэла, имеем к = Ei= I = 0,128 к 1 =0,872. Эти величины существенно отличаются от результатов, приведенных на рис. 7.3, экстраполяцией данных в крайнюю левую точку Гз (б) = 100 °С. Это значит, что после высыхания внешней поверхности при последующем незначительном увеличений объемного тепловыделения происходит ре> кое сокращение длины зоны испарения вследствие углубления ее с внешней поверхности на значительное расстояние внутрь пористого элемента. При этом температура материала на внешней поверхности возрастает и почти вся вьщеляемая на высохшем паровом участке теплота, до этого непосредственно поглощавшаяся испаряющимся охладителем, теперь передается теплопроводностью в зону испарения. При дальнейшем повьь шении объемного тепловыделения и увеличении температуры вытекающего перегретого пара возрастает температура пористой матрицы на паровом участке, но ддина зоны испарения практически не изменяется и вся она постепенно перемещается к внутренней поверхности элемента.  [c.166]

Эксперименты с Д. п. позволяют определять энергии СВЯ.ЭИ с матрицей адсорбиров. частицы. Д. п. применяют для холодной очистки острий в полевой эмиссионной микроскопии, как один из методов получения интенсивных ионных пучков, напр, в ионных источниках масс-спектрометров. Д. п. и испарение полем — осн. про-  [c.585]

Фундам, результат Хокинга заключается в том, что он нашёл механизм, обеспечивающий излучение Ч. д. Таким механизмом является квантовое рождение частиц в её гравитац. поле. Внутри Ч. д. имеются орбиты, для к-рых энергия отрицательна с точки зрения внеш. стационарного наблюдателя. Поэтому энергетически возможно спонтанное рождение пары частиц вблизи горизонта событий. Одна из частиц имеет положит, энергию и уходит на бесконечность, другая имеет отрицат. энергию и падает в Ч. д., уменьшая тем самым её массу. Наличие горизонта событий препятствовало бы этому при классич. рассмотрении, но в квантовом случае это возможно благодаря туннелированию частиц сквозь горизонт. Механизм Хокинга получил назв. квантового испарения Ч. д. Вследствие наличия горизонта событий квантовое излучение Ч. д. описывается не чистым квантовым состоянием, а квантовой матрицей плотности. Поэтому излучение Ч. д. имеет тепловой спектр (строго говоря, спектр отличается от теплового вследствие рассеяния излучения гравитац. полем Ч. д.). Хокинг доказал, что Ч. д. излучает как чёрное тело с темп-рой (5). Квантовое испарение ведёт к потере массы Ч. д. со скоростью  [c.456]


Впервые ЖКК были созданы на базе холестерических кристаллов в 70-е годы для целей термографии, В водный раствор поливинилового спирта (ПВС) при перемешивании добавляли раствор холестерика для образовании эмульсии. Испарение воды приводило к затвердеванию пленки ПВС, в порах которой формировалась планарная текстура холестерика, Зачерненная с одной стороны пленка ЖКК обладала свойством вьфаженного селективного отражения, которое зависело от температуры, На этой основе в дальнейшем были разработаны термоиндикаторы, В 80-е годы были разработаны композиты с нематиками для применения в электрооптике, ЖКК с нематиками nojiy4eHbi на основе полимерной матрицы, в свободных полостях которой находится нематик,  [c.151]

Газопарофазными способами наносят на армирующие волокна барьерные или технологические покрытия, обеспечивающие их защиту от разрушения при взаимодействии его с материалом матрицы. Их фазовый состав (чаще всего нитриды, бориды, оксиды, карбиды) выбирают исходя из физикохимической и термомеханической совместимости армирующих волокон и материала матрицы. Покрытия получают в результате либо разложения летучих карбонильных соединений металлов, либо испарения металлов и сплавов при термическом воздействии электронным лучом, ионными пучками. Низкая производительность методов не позволяет использовать их для прямого компактирования композиционных материалов.  [c.273]

Современные теории пластификации, свидетельствующие о том, что пластифицированный полимер обладает гелеподобной структурой и пластификатор снижает взаимодействие цепей в местах контакта и/или зацеплений, не исключают возможности возникновения включений пластификатора неопределенно малых размеров, диспергированных в полимерной матрице. Тем не менее автор считает, что обычные пластифицированные полимеры такие как ПВХ, не следует относить к макро- или микрокомпозициоиным материала . . Однако существуют другие смеси полимеров и жидкостей, которые могут быть без сомнения отнесены к композиционным материалам. Так, сетчатые полимеры, получаемые поликонденсацией, например отверждаемые фенолоформальдегидные смолы могут содержать тонкодиспергированные частицы воды, сохраняющиеся в течение нескольких лет. В случае литых изделий из фенолофор-мальдегидных ненаполненных смол предпринимались большие усилия для сохранения и стабилизации такой гетерофазной структуры, при которой материал не растрескивался при испарении воды. Около 10 лет назад в промышленных масштабах с большим успехом начали использовать водонаполненные полиэфирные смолы (патент США 3.256.219). Воду диспергировали [22] в смоле в виде сферических частиц диаметром 2—5 мкм с концентрацией, достигающей 90%. Такие материалы использовали для замены гипса и древесины, а также в качестве теплозащитных абляционных покрытий.  [c.39]

Одно из решений проблемы производственных затрат могло бы заключаться в разработке метода покрытия волокон однородным слоем желательного матричного сплава. Это позволило бы заменить дорогостояш ие титановые фольги и в то же время создать эффективный метод пространственного расположения волокон (последнее представляется более важным для композиционных материалов с титановой матрицей, чем для материалов с менее прочными матрицами). До настояш,его времени попытки контролировать пространственное расположение волокон с помощью плазменного напыления матрицы оказывались неудачными вследствие чрезмерного увеличения содержания кислорода. Кроме того, реакция между расплавленным напыляемым материалом и волокнами была очень интенсивной. Необходима разработка высокоскоростных методов покрытия отдельных волокон как составного этапа производственного цикла изготовления волокна. Одним из таких методов могло бы стать элеи тронно-лучевое испарение из нескольких источников.  [c.334]

Изложены основные представления о закономерностях диффузионного взаимодействия материала покрытия с матрицей и матрицЫ с осаждаемым материалом. Рассмотрены ростовые дефекты в покрытиях, получаемых методами испарения - конденсации материала покрытия в вакууме, разложением и восстановлением летучих металлсодержащих соединений. Оценено влияние второго компонента при осаждении двух компонентов, описаны наиболее часто встречаюищеся типы дефектов и возможные механизмы их возникновения.  [c.2]

Рост по параболическому закону происходит при осаждении атомов на поверхность растущего покрытия при температуре, когда упругость паров осаждаемого материала весьма велика, но закрепление атомов возможно только в том случае, если они взаимодействуют с атомами матрицы с образованием соединения с малой упругостью паров. В этом случае происходит диффузионно контролируемый рост покрытия. Расчетный метод определения температуры, при которой физическое испарение начинает преобладать над конденсацией, указан в [60] в ней же приведены экспериментальнь1е данные, полученные при разложении паров зслоридов алюминия и меди.  [c.119]

Указанные граничные условия практически полностью охватывают те ситуации, которые могут возникнуть во всех разновидностях метода парогазовой фазы испарение-конденсация в вакууме, разложение лету-, чих соединений. Кроме того, эти граничные условия могут быть использованы и при анализе процессов окисления. При окислении рост поверхностного оксидного слоя происходит только в результате связывания кислорода атомами металла, диффундирующими через слой оксида из матрицы. Скорость поверхностной реакции завишт от концентрат атомов металла на поверхности роста оксида. При окислении рост оксидного слоя контролируются не только диффузией атомов металла, но и скоростью химической реакции на поверхности роста. Поэтому кинетика роста может и не подчиняться параболическому закону. Вид зшиси-  [c.119]


Смотреть страницы где упоминается термин Испарение матрицы : [c.82]    [c.97]    [c.118]    [c.131]    [c.448]    [c.169]    [c.152]   
Матричная изоляция (1978) -- [ c.24 ]



ПОИСК



Испарение



© 2025 Mash-xxl.info Реклама на сайте