Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Генераторы регулирование тока

На рис. 1.1, а приведена конструктивная схема машинного агрегата, включающего одноцилиндровый двигатель внутреннего сгорания Д, передаточный механизм ПМ, рабочую машину РМ — генератор электрического тока и маховик, предназначенный для регулирования скорости движения рабочего вала. На рис. 1.1, б дана принципиальная схема машинного агрегата, включающего систему автоматического управления (САУ) или регулирования движения машин.  [c.7]


Чувствительный элемент системы регулирования угловой скорости вала машины может быть выполнен не только как центробежный маятник. К настоящему времени разработано много других видов чувствительных элементов. Па рис. 89 показана схема регулятора непрямого действия с тахогенератором /, т. е. электрическим генератором постоянного тока, который дает напряжение и, пропорциональное угловой скорости вала регулируемой машины. Одна клемма тахогенератора соединена с усилителем 2, а другая с щеткой потенциометра 3, находящегося под действием напряжения постоянного тока электрической сети. В результате такого соединения в усилитель 2 подается разность напряжений U — Un. Щетка потенциометра устанавливается так, чтобы напряжение U было равно U при заданном значении скорости установившегося движения. Тогда разность напряжений U — равна нулю, и шток электромагнита 4 остается неподвижным.  [c.311]

Крупным успехом явился выпуск в 1931 г. заводом Электросила первого советского электропривода с двигателем в 7 тыс. л. с. для реверсивного обжимного стана (блюминга). В приводе блюминга было применено одно из достижений мировой техники — управление скоростью главного мотора и его реверсирование при помощи индивидуального генератора постоянного тока, что обеспечивало плавное регулирование скорости. Благодаря этому представилось возможным отказаться от реверсивного парового привода мощных прокатных станов, применявшегося до того в отечественной практике.  [c.113]

Агрегат СМГ-1 имеет первый отечественный сварочный генератор с расщеплёнными полюсами СМГ-1, построенный по схеме американского генератора типа WD фирмы GE . Предназначается для сварки металлическим электродом. Регулирование тока производится только смещением щёток, что приводит к быстрому расшатыванию щёточного механизма, к искрению и обгоранию пластин коллектора. Установка на малые токи осуществляется с помощью балластного реостата в цепи дуги. Мощность генератора недостаточна для ряда часто встречающихся сварочных работ.  [c.279]

В тепловозах обычно применяются генераторы постоянного тока и сериесные тяговые двигатели. Такая система наиболее просто и надёжно обеспечивает большую пусковую силу тяги, плавное регулирование скорости и автоматизацию управления.  [c.574]


Генераторы постоянного тока применяются 1) для питания двигателей постоянного тока в стационарных промышленных установках и нестационарных (например, на тепловозах) 2) в качестве возбудителей синхронных генераторов и синхронных двигателей 3) для зарядки аккумуляторных батарей 4) для электролиза и гальванопластики 5) в авто- и авиатранспорте, 6) в установках проводной и радиосвязи 7) в качестве электромашинных усилителей для непрерывного регулирования и управления приводов постоянного тока.  [c.381]

Генераторы постоянного тока — Напряжение—Регулирование 384  [c.536]

Электромашинный усилитель — специальный генератор постоянного тока, служащий для значительного усиления мощности, подаваемой на его входную цепь (обмотку возбуждения) и применяемый для целей регулирования и управления.  [c.467]

Направление наведенной э. д. с. в проводнике 450 Напряжение — Детектирование и ограничение 580 — Диаграмма векторная 459 — Соотношения между линейным и фазным 461 --генераторов постоянного тока — Регулирование 471 --для цепи переменного тока — Диаграмма векторная 459 для цепи якоря двигателя — Урав-  [c.720]

Сварочные генераторы постоянного тока допускают широкий диапазон регулирования тока.  [c.190]

Для устранения перечисленных недостатков была разработана новая конструкция центробежного очистителя, показанная на рис.З. Новый очиститель имеет привод от электродвигателя 1 мощностью 6/сет. Двигатель питается от отдельного генератора постоянного тока. Регулированием возбуждения генератора достигается изменение числа оборотов вала двигателя от 8000 до 1000 об/мин.  [c.105]

Из регуляторов реостатного типа наиболее широкое распространение нашли угольные регуляторы напряжения (ступенчатые регуляторы из-за из недостаточной виброустойчивости не нашли применения). Основное преимуш,ество угольных регуляторов напряжения состоит в том, что они допускают регулирование напряжения генераторов постоянного тока большой мош,ности, величина тока возбуждения которых достигает 15 а и более.  [c.227]

Поток энергии в направлении к маховику и от него контролируется генератором. Скорость вращения маховика зависит от крутящего момента, приложенного генератором, работающим в режиме двигателя, к коронной шестерне планетарной передачи. Момент от генератора, как и механическая энергия, передается через планетарную передачу на выходной вал трансмиссии, а электрическая энергия протекает по якорной цепи генератора и двигателя. Величина и иаправление потока мощности определяются контроллером в соответствии с требованиями водителя. Регулирование осуществляется воздействием на обмотки возбуждения двигателя и генератора. Изменение тока в целях обеих обмоток определяет силу и направление якорного тока.  [c.74]

В настоящее время двигатели внутреннего сгорания (дизели) широко используются для привода генераторов переменного тока, которые требуют повышенной точности поддержания заданной частоты при всех нагрузках. Удовлетворение этого требования определяется в первую очередь качеством работы системы автоматического регулирования дизеля. Известно, что наиболее высокие качественные показатели процесса регулирования дают изодромные автоматические регуляторы непрямого действия, конструкции которых доведены до определенного совершенства. Однако требование дальнейшего повышения качества процесса регулирования продолжает сохранять свою актуальность и в настоящее время. Трудно предположить, что дальнейшее существенное улучшение параметров регулирования можно осуществлять посредством автоматических регуляторов, работающих только на принципе Ползунова — Уатта, т. е. посредством регуляторов, реагирующих лишь на изменение скорости вращения вала двигателя.  [c.25]

Электрическая часть системы регулирования имеет собственный электрический датчик частоты вращения, выполняемый в виде индукторного тахо-генератора, т.е. генератора электрического тока небольшой мощности с возбуждением от постоянных магнитов, расположенного на валу турбины. Механический регулятор сохранен, но выполняет свои функции только в случае неисправности или отключения электрической части системы регулирования. Последняя содержит также датчики активной мощ-  [c.160]


Электрохимический генератор входит в состав электрохимической энергоустановки (ЭЭУ), которая включает систему хранения и обработки топлива и окислителя, устройства для преобразования (например, инвертор) и регулирования тока и напряжения, а иногда и общую систему терморегулирования и автоматики. Простейшая структурная схема электрохимической энергоустановки приведена на рис. 9.45.  [c.530]

В промышленности используют регуляторы с обратной связью по напряжению генератора, индуктора, току контура, а в процессе наладки и по температуре детали. Наиболее эффективным является регулирование С обратной связью по напряжению и току индуктора.  [c.605]

Из диаграммы фиг. 31 видно, что при пользовании потенциометрической схемой регулирования ток возбуждения в в нулевом положении регулятора напряжения равен нулю при любом выбранном значении сопротивления потенциометра Р. В то же время даже полностью введенный шунтовой реостат при любом его сопротивлении не снижает до нуля ток возбуждения, а следовательно, и напряжение на клеммах генератора.  [c.119]

Регулирование генераторов постоянного тока осуществляется с помощью электромагнитных вибрационных реле. Обычно три электромагнитных реле, осуществляющих соответственно регулирование напряжения, ограничение максимального тока и отключение батареи от генератора при неработающем генераторе, соединяются в один блок, называемый реле-регулятором. Принципиальные схемы каждого реле приведены на рис. 66.  [c.104]

АВТОМАТИЧЕСКОЕ РЕГУЛИРОВАНИЕ АВТОТРАКТОРНЫХ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА  [c.187]

Чистовая обработка на электроимпульсных станках обычно производится с использованием высокочастотного генератора импульсов типа ВГ-ЗВ. В основу его работы положено генерирование переменного напряжения с помощью лампового генератора и последующее выпрямление его вентильным устройством для получения униполярных импульсов. Генератор состоит из возбудителя колебаний — задающего генератора, усилителя напряжения, нредоконеч-ного и оконечного усилителей мощности и блока выпрямителей. Токоограничивающее сопротивление служит для регулирования тока через межэлектродный промежуток. Генератор обеспечивает две частоты следования импульсов 8 и 22 тыс. Гц, продолжительность импульсов 20—80 мне, скважность 1,4—2. На частоте 8 тыс. Гц можно работать со средним током в 2,5, 10 и 25—30 А, на частоте 22 тыс. Гц — 2,5 и 20 А.  [c.152]

Регулирование тока производится а) грубое — изменением числа витков последовательной размагничивающей обмотки путём включения конца кабеля в один из контактов, обозначенных цифрами 1, 2, И на борновой доске (фиг. 20) б) точное — реостатом, включённым в цепь намагничивающей обмотки (сопротивление реостата 3,5 ом) реостат монтирован на корпусе генератора.  [c.283]

К характеристикам, получаемым в системе при постоянном потоке двигателя и Ug-= = var (1—6, фиг. 19), обычно добавляются характеристики при постоянном напряжении генератора = onst и при переменном потоке возбуждения двигателя ф = уаг (7—13, фиг. 19). Эти характеристики используются для более высоких скоростей при расширении диапазона регулирования скорости. Строго говоря, они уже не будут параллельны характеристикам при Ug= var однако в масштабе графического изображения на фиг. 19 они могут считаться параллельными. Характеристики ниже оси абсцисс соответствуют обратному направлению вращения двигателя. Система Леонарда позволяет осуществить весьма плавное торможение с непрерывной рекуперацией энергии до самых малых скоростей. Переход от одной характеристики к другой при пуске производится постепенной перестановкой вручную или автоматически сначала реостата цепи возбуждения генератора (усиление его поля), а затем реостата цепи возбуждения двигателя (ослабление поля двигателя). Простота получения большого числа ступеней в цепи возбуждения генератора обеспечивает возможность исключительно плавного пуска электропривода. Торможение в ней производится в обратном порядке. Сначала повышается ток возбуждения двигателя до максимального значения, а потом уменьшается ток возбуждения генератора до минимального значения. При этом машина-двигатель почти всё время работает на генераторных тормозных характеристиках, так как э. д. с. двигателя оказывается больше э. д. с. генератора и ток идёт из двигателя в генератор.  [c.13]

Наиболее целесообразно для многомотор ного привода применение постоянного тока при работе электродвигателей по системе Вард-Левнарда и с их механической характеристикой, близкой к характеристике паровых машин. При этой системе каждый двигатель имеет собственный генератор, с которым он соединён постоянными шинами. Управление производится регулированием тока возбуждения генератора, который во много раз меньше рабочего тока электродвигателя, вследствие чего аппаратура управления получается компактной, лёгкой и удобной в работе, что особенно важно для машин крупных размеров.  [c.1168]

ЭМУ широко применяютс / в схемах лвтоматического регулирования. Они используются в качестве возбудителей генераторов постоянного тока регуляторов напряжения, мощности, тока или скорости вращения приводных двигателей, усилителей мощности. Технические и обмоточные данные некоторых ЭМУ приведены в тлбл. 10.  [c.491]

Экскаватор ЭТР-301А состоит из двух самостоятельных групп тягача, несущего на себе элементы всей машины, и рабочего органа — ротора (рис. 55). В конструкции тягача использованы элементы гусеничного хода и кабина трактора Т-ЮОМ. Рама 3 тягача вынесена консольно вперед и значительно удлинена. В передней части рамы крепится дизель-генераторная установка /, состоящая из дизеля марки У1Д6-250ТК мощностью 250 л. с. и генератора переменного тока типа ГС-104-4 мощностью 200 кет. Все управление и регулирование установки сосредоточено в кабине водителя.  [c.94]

В качестве источников постоянного тока могут быть использованы мощные низковольтные выпрямители, а также электро-машинные преобразователи, которые нашли широкое применение в гальванотехнике. Так, например, используется маслонаполненный регулируемый выпрямитель ВСМР-2000-6, предназначенный для питания током электролитических ванн гальванических цехов с пределами регулирования силы тока 1000...2000 А и напряжением 4...6 В. Для плавного регулирования режима последовательно в рабочую силовую цепь включается переоборудованный балластный реостат РБ-300. Переоборудование сводится к увеличению сечения ступеней реостата и соответственно уменьшению величины их электрического сопротивления. В генераторах постоянного тока регулирование силы тока может производиться реостатом, включенным в цепь возбуждения.  [c.81]


МГД-генератор —линейный, кондукционный канал диагонального типа с разрезными рамками, позволяющий осуществить индивидуальное регулирование тока в рамках. Канал, как и камера сгорания, охлаждается водой. С помощью насосов эта вода подается в отдельные охлаждаемые элементы, а затем поступает в расширители. Из расширителей пар отводится в подогреватели высокого давления паротурбинной установки, вытесняя частично или полностью соответствующие отборы турбины.  [c.310]

В целях регулирования тока в сеть шунтовой обмотки генератора включают шунтовые реостаты или же на выходе тока ставятся, преимущественно, рубильниковые реостаты. Рубильни-ковые реостаты состоят из однополюсных рубильников, включенных на каждую секцию реостата сопротивления включаются параллельно.  [c.74]

Высокой чувствительностью и долговечностью обладают бесконтактные магнитные усилители (МУ) - электромагнитные устройства, в которых используется зависимость магнитной проницаемости ферромагнитного материала от напряженности магнитного поля. В системах автоматизированного электропривода постоянного тока, в частности, для регулирования частоты вращения широкое распространение получили эле-ктромашинные усилители (ЭМУ) - генераторы постоянного тока с регулируемым возбуждением. Они имеют значительную выходную мощность, высокие коэффициенты усиления по мощности и напряжению, быстродейственны.  [c.105]

Регулирование тока возбуждения обеспечивает получение более устойчивых скоростей лебедки, повышает полезную нагрузку генератора, уменьшает нагрев двигателя, генератора и пускорегулирующего сопротивления и снижает расход электроэнергии.  [c.162]

Главный привод обычно включает двигатель независимого возбуждения. Реверсирование производится изменением направления тока в якоре контакторами направления В VL Н, разгон — замыканием секций реостата, а регулирование скорости — изменением напряжения генератора регулирования магнитного потока-возбуждения. Автоматические двери приводятся в движение шун-товым двигателем постоянного тока с реверсированием его путем изменения направления тока в якоре. Рас-тормаживание механического тормоза производится электромагнитом постоянного тока, включаемым контактором торможения КТ при возбуждении контактора пуска КП. В некоторых схемах катушка контактора пуска КП включается последовательно с контакторами направления В и Н.  [c.194]

В генераторе постоянного тока с параллельным включением обмотки возбунедения величина тока в обмотке индуктора очень незначительная, но благодаря большому числу витков получают большой магнитный поток. Наличие малого тока возбуждения создает благоприятные условия для регулирования их работы, что является крайне необходимым в автотракторных генераторах. Кроме тога, при параллельной работе генератора с аккумуляторной батареей другой способ возбуждения неприменим по соображениям, указанным выше.  [c.48]

Объясняется это тем, что при повышении числа оборотов якоря шунтового генератора и отсутствии регулятора тока зарядный ток будет повышаться. Повышение тока пагубно отразится на состоянии пластин аккумуляторов, которые будут коробиться, активная масса будет высыпаться, сепараторы обугливаться, и батарея выйдет из строя. Для автоматического регулирования тока генератора при переменном режиме, как по нагрузке, так и по числу оборотов, применяют третью щетку, с помощью которой используется явление реакции якоря. Конструктивное выполне-  [c.214]


Смотреть страницы где упоминается термин Генераторы регулирование тока : [c.283]    [c.82]    [c.19]    [c.97]    [c.583]    [c.234]    [c.1062]    [c.841]    [c.77]    [c.235]    [c.6]    [c.738]    [c.140]    [c.140]    [c.153]   
Справочник по специальным работам (1962) -- [ c.214 , c.215 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте