Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Генератор электрохимический

Источники тока химические, физические, генераторы электрохимические, термоэлектрические  [c.34]

Источники тока химические, физические, генераторы электрохимические,  [c.42]

Термодинамика гальванических и топливных элементов. Применим уравнение (10.2) к электрохимическим генераторам — гальваническим и топливным элементам. Для этого установим связь между э.д.с. элемента и тепловым эффектом реакции, происходящей в элементе при его работе, в случае, когда изменение его внутренней энергии идет не на выделение теплоты, а на работу электрических сил.  [c.179]


Исключением в смысле отсутствия ограничений по к. п. д. являются электрохимические генераторы, которые в силу этого имеют большое будущее.  [c.515]

Принцип действия топливного элемента. Топливный элемент является химическим генератором электрической энергии (называемым электрохимическим генератором), в котором внутренняя или химическая энергия подаваемых в элемент активных (т. е. реакционно-способных) веществ в результате электрохимических реакций окисления вещества, служащего топливом, и восстановления вещества, являющегося окислителем, преобразуется в электрическую энергию.  [c.594]

Электрохимические генераторы (топливные элементы). Топливный элемент является химическим генератором электрической энергии.  [c.568]

Источником тока для электрохимической катодной защиты служат селеновые выпрямители или генераторы постоянного тока.  [c.55]

Помимо конструктивного совершенствования и повышения мощности термоэлектрических генераторных установок с ядерными реакторами в Советском Союзе ведется разработка конструкций радиоизотопных генераторов. Для генерирования электрического тока в них используется тепло, образующееся при распаде радиоактивных изотопов кобальта, кюрия, полония и др. Они имеют небольшие габаритные размеры и надежно действуют в течение длительного времени без подзарядки (в зависимости от продолжительности периода полураспада соответствующих радиоактивных элементов) и по количеству энергии, вырабатываемой на 1 кг собственного веса, превосходят электрохимические батареи.  [c.186]

Создание дешевых топливных элементов с высоким КПД (60 %), работающих на. органическом топливе, в широких масштабах позволило бы сохранить топливные ресурсы на многие столетия. Целый ряд проблем размещения АЭС можно исключить, если передавать на большее расстояние не электроэнергию, а водород. Например, АЭС, расположенная на плавающей в океане платформе, может вырабатывать водород электролизом морской воды. Полученный водород затем передавался бы по трубопроводам. к топливным элементам, расположенным у потребителя, или централизованным станциям, как сегодня транспортируется природный газ. Однако прежде чем электрохимические генераторы смогут играть такую роль, необходимо решить целый ряд проблем, связанных с разработкой материалов, конструкцией электродов, выбором электролитов и т. п.  [c.94]

Электрохимические генераторы энергии в последнее время привлекают все большее внимание. И это вполне оправдано. Действительно, возможность получать электроэнергию, не сжигая топлива, а превращая химическую энергию его и окислителя сразу в электроэнергию, чрезвычайно заманчива. Длинная цепочка энергетических превращений [химическая энергия топлива и окислителя — внутренняя энергия горячих продуктов сгорания— теплота — внутренняя энергия рабочего тела (вода, пар)—механическая энергия турбины — электроэнергия], проводимых в сложных устройствах со значительными потерями эксергии (более 50%), заменяется одним процессом в одном устройстве — электрохимическом генераторе электроэнергии (ЭХГ). КПД этих устройств очень высок. Пока ЭХГ дороги и их использование ограничено, но интенсивная работа по их совершенствованию идет весьма успешно.  [c.215]


Рис. 5.10. Диаграммы потоков энергии (а), энтропии (б) и эксергии (в) для электрохимического генератора (ЭХГ) Рис. 5.10. Диаграммы <a href="/info/19469">потоков энергии</a> (а), энтропии (б) и эксергии (в) для электрохимического генератора (ЭХГ)
Электрохимическим генератором (ЭХГ), электрохимическим преобразователем (ЭХП) или батареей топливных элементов называют установку, предназначенную для непосредственного преобразования химической энергии топлива в электрическую энергию.  [c.113]

Топливные элементы Преобразование химической энергии в электрическую возможно с помощью электрохимических генераторов — топливных элементов (ТЭ). В ТЭ химическая энергия подаваемых в элемент реакционно-способных веществ в результате электрохимических реакций окисления вещества, служащего топливом, и восстановления вещества, являющегося окислителем, преобразуется в электрическую энергию расходуемые активные элементы непрерывно подводятся извне и это обеспечивает непрерывную работу ТЭ. Принцип действия ТЭ следующий. В сосуде с электролитом помещаются два электрода— анод и катод. К поверхности анода непрерывно подводится восстановитель-топливо, а к поверхности катода — окислитель. Электрод, контактирующий с восстановителем-топливом, принимает более отрицательный потенциал по сравнению с электродом, находящимся в контакте с окислителем. При замыкании внешней цепи по ней потечет электрический ток, а на границах электрод—электролит будут происходить электрохимические реакции, приводящие к передаче электронов от электрода к электролиту или обратно. В электролите электрический ток возникает вследствие перемещения ионов от одного электрода к другому.  [c.279]

Устройство, состоящее из модулей ТЭ, систем подачи топлива и окислителя, отвода продуктов реакции и автоматики, называют электрохимическим генератором (ЭХГ). Энергоустановка на основе ТЭ кроме ЭХГ включает в себя следующие системы подготовки и переработки топлива и окислителя, преобразования постоянного тока в переменный (инвертор), переработки продуктов реакции и утилизации их теплоты.  [c.544]

Примерами первого направления могут служить работы по созданию электрохимических и термоядерных преобразователей. Ко второму направлению можно отнести работы, связанные с использованием известных возобновляемых источников энергии (солнца, ветра, морских приливов и др.). Новые способы преобразования энергии реализуются также в термоэлектрических, термоэмиссионных устройствах и в МГД-генераторах.  [c.478]

ЭЛЕКТРОХИМИЧЕСКИЕ ГЕНЕРАТОРЫ И ЭНЕРГОУСТАНОВКИ  [c.528]

Электрохимический генератор (ЭХГ). Он состоит из батареи ТЭ и систем, обеспечивающих ее работу.  [c.530]

Электрохимический генератор входит в состав электрохимической энергоустановки (ЭЭУ), которая включает систему хранения и обработки топлива и окислителя, устройства для преобразования (например, инвертор) и регулирования тока и напряжения, а иногда и общую систему терморегулирования и автоматики. Простейшая структурная схема электрохимической энергоустановки приведена на рис. 9.45.  [c.530]

ХАРАКТЕРИСТИКИ ТОПЛИВНЫХ ЭЛЕМЕНТОВ И ЭЛЕКТРОХИМИЧЕСКИХ ГЕНЕРАТОРОВ  [c.531]

Г —генератор синусоидальных колебаний 21—3—импедансы плечей моста z< — импеданс электрохимической ячейки О — индикатор нуля П — потенциометр постоянного тока Ф — фильтр, препятствующий проникновению переменного тока в цепь потенциометра.  [c.141]

Электрохимическая защита подземных трубопроводов может быть осуществлена в двух вариантах применением внешних источников постоянного тока (установки катодной защиты с выпрямителями, генераторами постоянного тока, химическими элементами МОЭ-1000 и т. п.) и внутренних источников — протекторов. При присоединении к трубопроводу протектора, изготовленного из металла с более отрицательным электродным потенциалом по отношению к стали, образуется гальванический элемент.  [c.166]

Конечно, самый радикальный способ борьбы за чистоту воздуха на наших улицах — замена двигателя внутреннего сгорания электрохимическими генераторами тока (топливными элементами), которые преобразуют химическую энергию непосредственно в электрическую и питают электроэнергией тяговый электродвигатель. Но, несмотря на усилия ученых, пока не созданы дешевые, экономичные и мощные электрохимические генераторы. Возможно также использование аккумуляторов электроэнергии, которые заряжаются от городской сети, а затем при езде питают электродвигатель, приводящий в движение автомобиль. Электромобили за рубежом  [c.234]


Радикальным способом борьбы с загрязнением воздуха отработавшими газами автомобилей является замена двигателя внутреннего сгорания на электрохимические генераторы тока (топливные элементы), которые преобразуют химическую энергию непосредственно в электрическую и питают электроэнергией тяговый электродвигатель. Но в настоящее время пока не созданы дешевые, экономичные и мощные электрохимические генераторы.  [c.395]

Для ускорения электрохимических процессов предусмотрено реверсирование тока, которое в ванне электрохимического обезжиривания производится изменением полярности в обмотке возбуждения генератора (с помощью двух моторных реле времени и двух магнитных пускателей). Обезжириваемые детали четыре минуты находятся на катоде и одну минуту на аноде. В ванне электролитического цинкования реверсированием тока управляет электронное реле времени. Соотношение катодного и анодного периода 10 I.  [c.331]

Соответствующие устройства, в которых осуществляется превращение химической энергии в электрическую, называются термоэлектрическими генераторами, термоэмиссионными преобразователя.ми, магнитогндродина-мическими (МГД) генераторами, электрохимическими генераторами или топливными элементами, солнечными батарея.ми.  [c.515]

В сочетании с электрохимической катодной заш,итой, которая весьма экономична в комбинации с высококачественным защитным покрытием. Электрохимическая катодная защита осуществляется в двух вариантах а) с использованием внешних источников тока (аккумуляторных батарей, селеновых выпрямителей, генераторов постоянного тока) б) с применением протекторов из металлов с электродным потенциалом более отрицательным, чем у стали (магний, цинк, алюминий или их сплавы).  [c.394]

Из шести типов прямых преобразователей энергии, в которых энергия тел преобразуется в энергию электрического тока (электрохимические генераторы, фотоэлек-1рические преобразователи, термоэмиссионные преобразователи, магнитогидродинамические генераторы, термоэлектрические преобразователи, квантовые преобразователи) только первые два являются в полной мере прямыми преобразователями. В полезную внешнюю работу в электрохимических генераторах превращается внутренняя энергия рабочих тел, а в фотоэлектрических преобразователях — лучистая энергия Солнца, причем это превращение (т. е. рабочий процесс) протекает при постоянной температуре.  [c.568]

Рис 39 Схема электрического моста для измерения импеданса полимерного покрытия Z/, Z - нмпедансы плеч электрического моста Zj - регулируемый импеданс Z4 - импеданс электрохимической ячейки О осциллограф Г - генератор переменной частоты  [c.65]

ТэлГ — термоэлектрический электро(полупроводниковый) генератор ТЭмГ — термоэмиссионный генератор ТИГ — термоионный электрогенератор ТУ — турбинная установка ТЭС — тепловая электростанция ЭАБ — электрохимическая аккумуляторная батарея ЭГДГ — электрогазв(гидро)динамический (электро)генератор ЭДС — электродвижущая сила ЭУ — энергетическая установка  [c.194]

Опыты проводили (совместно с И. Г. Абдуллиным) в специальной электрохимической ячейке, снабженной платиновыми электродами и устройством для механического нагружения образца. Резистометрическая установка была собрана на основе потенцио-, метрической схемы и включала генератор звуковой частоты (20 кГц) со стабилизирующим дискриминатором, потенциометр, детектор и самописец с усилителем постоянного тока типа Н37. Платиновые электроды располагались в непосредственной близости к поверхности образца, что позволило проводить измерения в нестационарных условиях диффузионной кинетики.  [c.36]

Для очистки окалины во вторых термических и инструментально-термических цехах применяются простые немеханизированные и конвейерные установки электрохимического травления с мотор-генераторами постоянного тока. Установки включают баки травильные с подводом тока для горячей и холодной промывки и нейтрализационные. При травлении с осаждением свинца дополнительно включается бак для снятия свинца с подводом тока.  [c.613]

Исследования тепловых и химических свойств электрического тока, проводившиеся физиками Э. Карлейлам, В. Никольсоном, В. В. Петровым, Г. Дэви, М. Фарадеем, Э. X. Ленцем, Д. П. Джоулем, Б. С. Якоби, заложили научные основы практической электрохимии и электротермии. Промышленная электрохимия началась с освоения гальванотехнических процессов рафинирования меди и добычи электролитическим путем кислорода и водорода. Первоначально источниками электричества служили гальванические батареи. Отсутствие экономичных и достаточно мощных генераторов тормозило внедрение в практику электрохимических и электротермических процессов. Лишь появление в начале 70-х годов динамомашины дало заметный толчок развитию электрохимии и электрометаллургии. Еще больший размах эти отрасли получили с введением централизованного электроснабжения. К концу XIX в. электролитическим лутем производили в широких масштабах рафинированную медь, бертолетову соль, хлор, некоторые щелочи, озон (для стерилизации и очистки воды). Развивалась и совершенствовалась гальванотехника. Использование электрической энергии привело к появлению и развитию новых способов производства искусственных удобрений для сельского хозяйства. В это же время возник ряд электрометаллургических и электрохимических производств, основанных на применении электрических печей. Был изобретен и стал применяться на практике новый способ обработки металлов — электросварка.  [c.64]

Большое внимание уделяется уравновешиванию роторов в точном приборостроении. Предлагается способ обнаружения статической неуравновешеиностн тонкостенных роторов но из.ме-ненню частоты собственных колебаниГ в подвесе. Показано развитие методов авто.матнчсского уравновешивания роторов с компенсацией дисбалансов способом взрывающихся проволочек, электрохимическим способом, с по.мощью оптического квантового генератора или электронного луча. Описаны методы экспериментального исследования процесса автоматического уравновешивания с использованием ЭВМ.  [c.8]


Генератор развивает напряжение (при отсутствии регулятора последнего), пропорциональное оборотности сила тока гаропорциональна напряжению, т. е. опять оборотности мощность при омической (осветительной, электрохимической) нагрузке пропорциональна и напряжению и силе тока, т. е. квадрату оборотности момент пропорционале оборотности. Отсюда следует, что линии Мс прямые и исходят иэ начала координат.  [c.215]


Смотреть страницы где упоминается термин Генератор электрохимический : [c.196]    [c.181]    [c.568]    [c.63]    [c.34]    [c.6]    [c.113]    [c.550]   
Теоретические основы теплотехники Теплотехнический эксперимент Книга2 (2001) -- [ c.530 , c.533 ]



ПОИСК



Электрохимический



© 2025 Mash-xxl.info Реклама на сайте