Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения вязкой жидкости несжимаемой вязкой жидкост

Уравнения движения. Уравнениями движения несжимаемой вязкой жидкости являются уравнение неразрывности  [c.223]

Следует отметить, что несжимаемая жидкость имеет только один коэффициент вязкости, так как по определению не происходит изменения объема. При анализе жидкости, содержащей малые объемы пузырьков воздуха, Тейлор [789] учитывал сжимаемость воздушных пузырьков путем введения второго коэффициента вязкости Он рассматривал уравнение движения сферического пузырька в вязкой жидкости в виде  [c.231]


Ввиду трудностей, описанных в 20, основное внимание математиков было сосредоточено на уравнениях Навье — Стокса для несжимаемых вязких жидкостей в предположении, что величины и р можно считать примерно постоянными. Большинство специалистов считает, что теоретическая гидродинамика, основывающаяся на уравнениях Навье — Стокса, дает довольно точное приближение динамики реальных жидкостей, если число Маха М настолько мало, что можно пренебречь эффектами сжимаемости. Они уверены в том, что (перефразируя Лагранжа) если бы уравнения Навье — Стокса были интегрируемы, то при малых числах Маха можно было бы полностью определить все движения жидкости (ср. 1). Для того чтобы исследовать, насколько обоснована такая уверенность, мы преобразуем сначала эти уравнения к более удобному виду.  [c.50]

Подставляя при этих предположениях выражения (6,1) в правые части уравнений (3.3), получим следующие дифференциальные уравнения движения вязкой и несжимаемой жидкости, представленные через составляющие вектора скорости в декартовых координатах.  [c.91]

Подставляя эти выражения в дифференциальные уравнения движения вязкой и несжимаемой жидкости и разделяя первые три полученные  [c.106]

В конце главы II было указано, что наиболее простым способом решения дифференциальных уравнений движения вязкой жидкости является способ, в основе которого лежит заранее принимаемое пред положение о форме траекторий всех частиц жидкости. В данной главе, следуя этому способу, рассмотрим отдельные примеры установившихся движений вязкой и несжимаемой жидкости.  [c.115]

Как уже указывалось в 8 главы II, основное затруднение в решении дифференциальных уравнений движения вязкой несжимаемой жидкости для конкретных задач заключается в наличии в левых частях этих уравнений квадратичных членов инерции. Эти квадратичные члены инерции тождественно обращались в нуль, как это мы видели в первых параграфах предшествующей главы, лишь только тогда, когда жидкость считалась несжимаемой, а траектории частиц представляли собой либо параллельные прямые, либо концентрические окружности. Последнее обстоятельство может служить основанием к заключению о том, что для движений вязкой несжимаемой жидкости, для которых траектории частиц будут мало отличаться либо от параллельных прямых, либо от концентрических окружностей, квадратичные члены инерции будут малы и ими с некоторым приближением можно пренебречь. К такому же допущению можно подойти и с другой точки зрения.  [c.155]


Итак, мы имеем довольно общее решение уравнений движения несжимаемой жидкости, как вязкой, так и идеальной. Однако это решение, в случае идеальной жидкости позволяющее рассмотреть целый ряд задач, в случае вязкой жидкости оказывается почти совершенно бесполезным. Допустим, например, что мы рассматриваем задачу о прямолинейном и равномерном движении твёрдого тела в жидкости со скоростью О параллельно оси х. Тогда в случае идеальной жидкости мы имеем всего лишь одно граничное условие, которое должно выполняться во всех точках поверхности S, ограничивающей тело, а именно  [c.399]

Для стационарных краевых задач движения вязкой несжимаемой жидкости О. А. Ладыженской было доказано [33], что они имеют решения при любых числах Ке, причем даже для нерегулярных границ. Нестационарные краевые задачи имеют единственное решение [33], если в них отсутствует зависимость от одной из координат или есть аксиальная симметрия. В остальных случаях нестационарных задач имеется ряд ограничений на начальные данные и числа Ке. В частности, исследования О. А. Ладыженской подтвердили достоверность основной системы уравнений вязкой жидкости для не слишком больших чисел Яе. Это подтверждают и эксперименты, указывающие на существование в определенном диапазоне чисел Яе ламинарной формы движения жидкости (газа), описываемой приведенными системами уравнений.  [c.408]

По поводу полученных в этом и предыдущем параграфах решений уравнений движения вязкой жидкости можно сделать следующее общее замечание. Во всех этих случаях нелинейный член (уу)у тождественно исчезает из уравнений, определяющих распределение скоростей, так что фактически приходится решать линейные уравнения, что крайне облегчает задачу. По этой же причине все эти решения тождественно удовлетворяют также и уравнениям движения идеальной несжимаемой жидкости, написанным, например, в виде (10,2), (10,3). С этим связано то обстоятельство, что формулы (17,1) и (18,3) не содержат вовсе коэффициента вязкости жидкости. Коэффициент вязкости содержится только в таких формулах, как (17,9), которые связывают скорость с градиентом давления в жидкости, поскольку самое наличие градиента давления связано с вязкостью жидкости идеальная жидкость могла бы течь по трубе и при отсутствии градиента давления.  [c.80]

Дифференциальное уравнение движения вязкой несжимаемой жидкости представлено уравнением Навье — Стокса для оси л  [c.407]

Преобразуем уравнения движения вязкой несжимаемой жидкости к безразмерному виду введением в уравнения безразмерных величин как независимых переменных, так и искомых. Для независимых переменных, имеющих размерность длины, выберем характерную длину /, или масштаб длин. Для тела в форме шара в качестве масштаба длин можно взять радиус шара. Для крыла самолета за характерную длину обычно выбирают среднюю хорду крыла, являющуюся его характерной шириной. В качестве масштаба времени возьмем Т, для скоростей — К, давления — Р. Постоянные величины сами являются для себя масштабами.  [c.578]

Получены уравнения движения вязкой несжимаемой жидкости в безразмерной форме. Для подобия течений такой жидкости должны быть одинаковы полученные уравнения в безразмерной форме, а для этого необходимо выполнение критериев подобия, т. е. чтобы были одинаковы для подобных течений числа Струхаля, Эйлера, Рейнольдса, Фруда.  [c.579]

Рассмотрим ламинарное (слоистое) течение вязкой несжимаемой жидкости в гладкой цилиндрической трубе. Примем, что движение установившееся. На этом примере покажем, как устанавливается критериальная зависимость сопротивления трубы от числа Рейнольдса. Решение поставленной задачи важно и само но себе как случай точного интегрирования уравнений движения вязкой несжимаемой жидкости.  [c.581]

Обозначив постоянное значение плотности через ро, уравнение движения вязкой несжимаемой жидкости в безразмерных величинах, разделенное на fo /Lo, запишем в виде  [c.246]


В случае вязкого газа полная система уравнений, характеризующая его движение и различные процессы в нем, сложная и уравнений много. В качестве примеров получим полную систему уравнений движения.вязкой несжимаемой жидкости, а также уравнения движения идеальной несжимаемой жидкости и идеального газа.  [c.557]

Переходя в уравнениях движения вязкой несжимаемой жидкости (42) к безразмерным величинам и выразив для краткости первые три уравнения в векторной форме, имеем  [c.560]

Получены уравнения движения вязкой несжимаемой жидкости в б е з р aз-м е р н о и форме. Для подобия течений такой жидкости должны быть одинаковы полученные уравнения в безразмерной форме, а для этого необходимо  [c.560]

Приведем для справок уравнения движения вязкой несжимаемой жидкости в часто используемых криволинейных координатах.  [c.76]

В классической гидродинамике уравнение движения вязкой несжимаемой жидкости записывается в форме дифференциального уравнения Навье — Стокса, которое получается на основе второго закона Ньютона.  [c.262]

Для вывода динамического уравнения гидравлического удара используем дифференциальную форму (5-19) уравнения движения вязкой несжимаемой жидкости  [c.209]

Уравнения движения вязкой несжимаемой жидкости  [c.72]

Рассмотрим обтекание плоской бесконечно тонкой пластинки несжимаемой вязкой жидкостью. Пусть вдали перед пластинкой жидкость движется поступательно с постоянной скоростью Ид. Пластинка имеет бесконечную длину и расположена вдоль по потоку параллельно скорости Задача плоская движение установившееся жидкость занимает всю плоскость вне пластинки. Эта задача о движении вязкой жидкости является самой простой, но, несмотря на это, она не поддаётся точному решению с помощью уравнений Навье —Стокса ввиду больших математических трудностей. Мы разберём эту задачу с помощью уравнений Прандтля, которые получаются из общих уравнений движений вязкой жидкости с помощью некоторых приближений ).  [c.122]

Таким образом, в результате анализа дифференциальных уравнений движения вязкой несжимаемой жидкости можно получить четыре безразмерных критерия, из которых составляется критериальное уравнение  [c.386]

Уравнения движения вязкой несжимаемой жидкости, т. е. уравнения Навье-Стокса, в инвариантной форме имеют вид  [c.19]

Рассмотри. г какое-нибудь уравнение движения вязкой несжимаемой жидкости, например уравнение движения по оси Ог  [c.516]

Уравнения движения вязкой несжимаемой жидкости в проекциях на оря-  [c.678]

Аналогично предыдущему (см. п.5.4) дифференциальные уравнения движения вязкой несжимаемой жидкости на участке диффузора отвода длиной 1з4 = I оиф будут  [c.81]

Уравнения движения вязкой жидкости, выведенные в гл. 6, являются общими и приложимы как к турбулентному течению, так и к нетурбулентному. Однако сложность турбулентного движения делает невозможным даже в простейших случаях строгое рассмотрение течений при задании граничных условий и отыскание точных решений таких задач. Полезной, хотя и ограниченной, альтернативой является рассмотрение картины осреднен-ного турбулентного течения, даже если детали пульса-ционного движения,мы установить не можем. Рейнольдс преобразовал уравнения движения вязкой несжимаемой жидкости в форму, которая позволяет провести такое рассмотрение. Эти уравнения можно получить описанным ниже способом.  [c.236]

Впервые уравнения движения вязкой жидкости с отброшенными квадратичными членами инерции были широко использованы Стоксом. На этом основании эти уравнения и получили название приближённых уравнений Стокса. В прямолинейных осях координат приближённые уравнения Стокса для движения вязкой несжимаемой жидкости представляются в виде  [c.156]

Если первой ступенью развития приближённых методов использования дифференциальных уравнений движения вязкой жидкости считать дифференциальные уравнения Стокса, а второй ступенью — дифференциальные уравнения Рейнольдса для слоя, то уравнения (1.6) Озеена следует считать уже третьей ступенью развития приближённых методов решения отдельных задач движения вязкой несжимаемой жидкости.  [c.227]

Уравнения движения вязкой несжимаемой жидкости. Если жидкость вязкая и несжимаемая, то ц = onst, 9 = div() = 0 и слагаемые с параметром X из (35) выпадают. Подставляя в них значения величин из (36), получим  [c.575]

Эти замечания удобно проиллюстрировать на примере теоретической гидродинамики. Если мы предполагаем, что жидкость несжимаема я ядеальна, т. е. лишена вязкости, то мы в состоянии решить много зад1ч, так как в нашем распоряжения оказываются очень эффективные математические методы решения, в то время как уравнения движения сжимаемой и вязкой жидкости решены для очень малого числа самых простых случаев.  [c.341]

Подставив, значения напряжений по (5.3) и (5.4) в (5.5) и произведя необходимые преобразования, получим уравнения движения вязкой несжимаемой (р = onst) жидкости в виде  [c.95]

Как известно, Осборну Рейнольдсу удалось так преобразовать гидродинамические уравнения движения вязкой однородной несжимаемой жидкости, что в эти полученные им уравнения входят только некоторые осредненные значения компонент скорости и вместе с ними шесть величин, которые характеризуют состояние турбулентности в данном месте и в данное время. Эти величины, таким образом, представляют шесть новых неизвестных функций координат и времени, и полученной Рейнольдзом системы уравнений недостаточно для того, чтобы из них и из начальных значений определить неизвестные функции.  [c.45]

Рассмотрим поступательное нестационарное движенне одиночной сферы постоянного радиуса а с фиксированной по направлению, но не по величине, скоростью v oait) в несжимаемой вязкой жидкости, покоящейся на бесконечности. Пусть нелинейные инерционные силы (как и в 6) малы (Рви, С 1), но (в отличие от 6) учтем линейные инерционные силы из-за быстрого изменения 2 (i). Решение задачи сводится к решению уравнений Стокса ползущего движения вязкой несжимаемой жидкости (3.3.24) в оо-системе координат (s = оо) с граничными условиями, заданными на подвижной сфере и на бесконечности  [c.175]


Первые три уравнения (44) называются уравнениями движения идеальной несжимаемой жидкости или уравнениями Эйлера. Начальные условия п этом случае задаются так же, как и в случае вязкой жидкости. Существенно изменяются граничные условия. Вместо условия прилипания вязкой жидкости используется условие отсутствия проникания жидкости через поверхность твердого тела, при котором обращаются в нуль нормальные составляющие скоростей в точках поверхности неподвижного тела, т. е. принимается, что вектор скорости направлен по касательной к поверхности обтекаемого тела.  [c.559]

Упомянем, что гидродинамические уравнения несжимаемой вязкий жидкости для любого стационарного осесимметричного движения, в котором скорость убывает с расстоянием как /г, могут быть сведены к одному обыкновенному линейному дифференциальному уравнению второго порядка, м. Слезкин Н. А.— Уч. зап. МГУ, 1934, вып. И Прикл. мат, и мех., 1954,  [c.121]

Пусть слоистое течение вязкой несжимаемой жидкости является плоскопараллельным, причем скорости течения в направлении оси z не изменяются duldz = 0. Тогда в первом уравнении движения сохранятся только тангенциальные вязкие напряжения, действующие в плоскости х, у 0 =0, Тгх = О и  [c.87]

Очевидно, что исходные параметры режима колеса являются входными для отвода. В соответствии с (1.5) запишем в координатах X, У дифференциальные уравнения движения вязкой несжимаемой жидкости на участке спиральной части отвода длиной 2з и эквивалентными гидравлическими диаметрами Вге2з, О гезз (рис.5. Г)  [c.78]


Смотреть страницы где упоминается термин Уравнения движения вязкой жидкости несжимаемой вязкой жидкост : [c.21]    [c.577]    [c.562]    [c.217]    [c.73]   
Курс теоретической механики для физиков Изд3 (1978) -- [ c.526 ]



ПОИСК



283 — Уравнения жидкости

Вязкая жидкость в движении

Движение в жидкости несжимаемо

Движение вязкой жидкости

Дифференциальные уравнения движения вязкой несжимаемой жидкости

Жидкости вязкие — Уравнения движения

Жидкости вязкие — Уравнения движения несжимаемые

Жидкости вязкие — Уравнения движения несжимаемые

Жидкость вязкая

Жидкость несжимаемая

Общие интегральные уравнения установившегося движения вязкой несжимаемой жидкости с переменной массой

Основы теории движения вязкой жидкости Дифференциальные уравнения движения вязкой несжимаемой жидкости

Различные формы уравнений движения вязкой несжимаемой жидкости

Точные решения уравнений движения вязкой несжимаемой жидкости

Уравнение движения для несжимаемой жидкости

Уравнение несжимаемости

Уравнения Навье—Стокса движения вязкой сжимаемой и несжимаемой жидкостей

Уравнения Стокса изотермического движения ньютоновской вязкой несжимаемой жидкости

Уравнения движения вязкой жидкости

Уравнения движения вязкой жидкости (уравнения Навье—Стокса) Уравнение Бернулли для струйки вязкой несжимаемой жидкости

Уравнения движения вязкой несжимаемой жидкости

Уравнения движения вязкой несжимаемой жидкости

Уравнения движения вязкой несжимаемой жидкости (полная система)

Уравнения движения вязкой несжимаемой жидкости в напряжениях

Уравнения движения вязкой несжимаемой жидкости в произвольной криволинейной системе координат

Уравнения движения вязкой несжимаемой жидкости осреднённого

Уравнения движения вязкой несжимаемой жидкости приближённые

Уравнения движения вязкой несжимаемой жидкости пульсационного

Уравнения движения жидкости

Уравнения движения и свойства винтового потока вязкой несжимаемой жидкости

Уравнения тел вязких



© 2025 Mash-xxl.info Реклама на сайте