Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точные решения уравнений движения вязкой несжимаемой жидкости

Рассмотрим ламинарное (слоистое) течение вязкой несжимаемой жидкости в гладкой цилиндрической трубе. Примем, что движение установившееся. На этом примере покажем, как устанавливается критериальная зависимость сопротивления трубы от числа Рейнольдса. Решение поставленной задачи важно и само но себе как случай точного интегрирования уравнений движения вязкой несжимаемой жидкости.  [c.581]


Решение Гамеля и его обобщения. Течение в диффузоре, рассмотренное нами в предыдущем параграфе, является частным случаем гораздо более общего точного решения уравнений гидромеханики вязкой несжимаемой жидкости, которое мы сейчас и рассмотрим. Движение жидкости мы будем предполагать плоским, стационарным и происходящим под действием сил, имеющих потенциал.  [c.475]

В этой главе делается попытка применить метод конечных элементов для решения полной системы уравнений движения вязкой несжимаемой жидкости. Решение справедливо для малых чисел Рейнольдса, однако если удастся найти достаточно точный метод рассмотрения эффектов пограничного слоя, то это решение можно будет распространить на случай более высоких чисел Рейнольдса.  [c.243]

Будем исходить нз системы уравнений для вязкой несжимаемой жидкости (1.1), (1.2). Покажем, что любое решение задачи о потенциальном движении идеальной жидкости является точным решением системы уравнений (1.1), (1.2).  [c.247]

В главе IV были рассмотрены простейшие решения точных дифференциальных уравнений установившегося движения вязкой несжимаемой жидкости. На основании сказанного выше эти решения определяют класс пока только возможных простейших установившихся движений вязкой несжимаемой жидкости, которые получили название ламинарных течений. Вопрос же о реальной осуществимости этих возможных простейших движений должен решаться отдельно либо с помощью непосредственной экспериментальной проверки основных особенностей ламинарных течений, либо с помощью теоретических исследований условий устойчивости этих течений. Экспериментальная проверка основных особенностей ламинарного течения, например, в круглой цилиндрической трубе показала, что для осуществимости ламинарного движения необходимо выполнение двух условий. Первое из этих условий заключается в том, что число Рейнольдса не должно превышать своего критического значения, т. е.  [c.385]

Среди точных решений уравнений газовой смазки интерес представляют случай линейной зависимости толщины смазочного слоя от продольной координаты, а также задача о нестационарном движении вязкой несжимаемой жидкости в смазочном слое, подробно изученная Л. М. Си-муни (1964), установившим границы возможности применимости в теории нестационарной смазки представления о квазистационарности вращения.  [c.513]


Более полно свойства реальной жидкости учитываются в модели вязкой несжимаемой жидкости, которая представляет собой среду, обладающую текучестью и вязкостью, но абсолютно несжимаемую. Теория вязкой несжимаемой жидкости лишь в ограниченном числе случаев с простейшими условиями позволяет получить точные решения полных уравнений движения. Наибольшее значение в этой теории имеют приближенные уравнения и их решения. Такие уравнения получают путем отбрасывания в полных уравнениях движения тех членов, которые мало влияют на соответствие теоретических решений результатам опыта. Решения приближенных уравнений могут быть как точными, так и приближенными.  [c.22]

Рассмотрим обтекание плоской бесконечно тонкой пластинки несжимаемой вязкой жидкостью. Пусть вдали перед пластинкой жидкость движется поступательно с постоянной скоростью Ид. Пластинка имеет бесконечную длину и расположена вдоль по потоку параллельно скорости Задача плоская движение установившееся жидкость занимает всю плоскость вне пластинки. Эта задача о движении вязкой жидкости является самой простой, но, несмотря на это, она не поддаётся точному решению с помощью уравнений Навье —Стокса ввиду больших математических трудностей. Мы разберём эту задачу с помощью уравнений Прандтля, которые получаются из общих уравнений движений вязкой жидкости с помощью некоторых приближений ).  [c.122]

В аналогичных задачах для вязкой несжимаемой жидкости движение непотенциально, требуется интегрировать нелинейную систему уравнений Навье — Стокса и уравнения неразрывности. В точной постановке задача о движении тела в вязкой жидкости математически очень трудна. При аналитических исследованиях получение соответствующих решений всегда связано с введением дополнительных предположений. В частности, многие теории связаны с линеаризацией уравнений движения.  [c.228]

Значительно развито содержание глав VHI—XI, посвященных общей динамике вязких несжимаемых жидкостей и газов, включая сюда теорию пограничного слоя и турбулентных движений. В этих главах изложены многие новые вопросы, относящиеся к динамике вязких неньютоновских и электропроводных жидкостей в магнитном поле, к результатам современных машинных расчетов точных решений уравнений Стокса, включая неизотермические движения и свободную конвекцию, к новым методам расчета пограничных слоев в несжимаемых жидкостях и в газовых потоках больших скоростей и к современным представлениям о турбулентности и ее применениям к некоторым прикладным задачам.  [c.2]

Уравнения движения вязкой жидкости, выведенные в гл. 6, являются общими и приложимы как к турбулентному течению, так и к нетурбулентному. Однако сложность турбулентного движения делает невозможным даже в простейших случаях строгое рассмотрение течений при задании граничных условий и отыскание точных решений таких задач. Полезной, хотя и ограниченной, альтернативой является рассмотрение картины осреднен-ного турбулентного течения, даже если детали пульса-ционного движения,мы установить не можем. Рейнольдс преобразовал уравнения движения вязкой несжимаемой жидкости в форму, которая позволяет провести такое рассмотрение. Эти уравнения можно получить описанным ниже способом.  [c.236]

В заключение предыдущего раздела, посвянденного движениям вязкой несжимаемой жидкости со сравнительно малыми рейнольдсовымн числами, дадим краткое описание методов точных решений полных, заключающих нелинейные члены (комноиенты конвективного ускорения) уравнений Стокса, включая сюда iie только аналитические, но и чисто численные решения, полученные в последнее время при помощи электронных вычислительных цифровых машин (ЭВЦМ).  [c.534]

Для вязкой несжимаемой теплопроводящей жидкости и изэнтропических течений сжимае-мого газа с политропным уравнением состояния рассматривается класс движений, для которых компоненты вектора скорости линейно зависят от части пространственных координат. Получены уравнения, описывающие такие движения. Рассмотрены примеры течений, в частности показано, что у уравнений газовой динамики существуют решения в классе вихревых неконических тройных волн с прямолинейными образующими. Найдем ряд точных решений.  [c.176]


На самом деле, как показывают многочисленные исследования, турбулентное движение, как бы ни было оно сложно по своей внутренней структуре, подчиняется общим законам динамики непрерывной среды, в частности установленным в предыдущей главе уравнениям динамики вязкой сжимаемой или несжимаемой жидкости в нестационарной их форме. В то же время не имеет смысла точная постановка вопроса о разыскании решений этих уравнений при строго поставленных начальных и граничных условиях. Де 1Ствительно, в обстановке неограниченного роста сколь угодно малых возмущений самые ничтожные отклонения от поставленных граничных и начальных условий (неточности в изготовлении поверхности обтекаемого тела, предыдущая история потока и др.) могут привести к столь значительным изменениям решений уравнений, чго за ними исчезнут все достоинства строгой постановки задачи. Пользоваться упрощенной геометризацией формы обтекаемых тел или каналов и не учитывать наличия начальных возмущений в потоке можно лишь в тех случаях, когда поток устойчив и существует уверенность, что сделанные малые ошибки в постановке задачи приведут к столь же малым ошибкам в ее пешении это и делалось ранее при рассмотрении ламинарных движений. Для исследования турбулентных движений приходится применять  [c.582]


Смотреть главы в:

Методы подобия и размерности в механике  -> Точные решения уравнений движения вязкой несжимаемой жидкости



ПОИСК



283 — Уравнения жидкости

Вязкая жидкость в движении

Движение в жидкости несжимаемо

Движение вязкой жидкости

Жидкости вязкие точные решения уравнений

Жидкости вязкие — Уравнения движения

Жидкости вязкие — Уравнения движения несжимаемые

Жидкость вязкая

Жидкость несжимаемая

Решение уравнений движения жидкости

Решение уравнений точное

Решения точные уравнений движения вязкой жидкости

Решения уравнения движения

Точные решения

Уравнение движения для несжимаемой жидкости

Уравнение несжимаемости

Уравнения движения вязкой жидкости

Уравнения движения вязкой жидкости несжимаемой вязкой жидкост

Уравнения движения вязкой несжимаемой жидкости

Уравнения движения жидкости

Уравнения тел вязких



© 2025 Mash-xxl.info Реклама на сайте