Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение твердого тела вокруг переносное

Для перетирания руды в рудниках применяется чилийская мельница, схема которой изображена на рис. 81. Бегуны ЛГ — тяжелые чугунные колеса со стальными обода-ми — катятся по дну неподвижной чаши, вращаясь вокруг вертикальной оси 00 с угловой скоростью и вокруг собственных осей ОСи ОС Сусловыми скоростями й)л. Очевидно, (0 — скорость переносного вращательного движения, а скорости (1), — скорости относительных вращательных движений колес. Движение каждого бегуна—это движение твердого тела вокруг неподвижной точки О. Следовательно, мгновенная ось будет проходить через точку О и некоторую точку А, лежащую на общей образующей конической поверхности бегуна и  [c.180]


Наряду с этим при решении задач в этом параграфе может быть использован и другой способ. Движение твердого тела вокруг неподвижной точки О с угловой скоростью Шг примем за относительное движение, а движение с угловой скоростью примем за переносное движение. Тогда определение скоростей точек твердого тела может быть произведено на основании теоремы сложения скоростей  [c.611]

Разложив плоское дви жение твердого тела на переносное поступательное вместе с поступательно движущимися осями координат, начало которых расположено в центре инерции твердого тела, и на относительное вращательное движение вокруг оси, проходящей через центр инерции С перпендикулярно к неподвижной плоскости (рис. 133), запишем дифференциальные уравнения плоского движения твердого тела в форме  [c.252]

В самом общем случае движение твердого тела мы представим как составное, разложив его на переносное поступательное вместе с какой-либо точкой , принятой нами за полюс, н относительное сферическое вокруг полюса.  [c.244]

Любое движение твердого тела, в том числе и движение плоской фигуры в ее плоскости, бесчисленным множеством способов можно разложить на два движения, одно из которых переносное, а другое — относительное. В частности, движение плоской фигуры в ее плоскости относительно системы координат OiX i/i, расположенной в той же плоскости (см. рис. 125), можно разложить на переносное и относительное движения следующим образом. Примем за переносное движение фигуры ее движение вместе с поступательно движущейся системой координат Ох у[, начало которой скреплено сточкой О фигуры, принятой за полюс. Тогда относительное движение фигуры будет по отношению к подвижной системе координат Ох[у[ вращением вокруг подвижной оси, перпендикулярной к плоской фигуре и проходящей через выбранный полюс О.  [c.136]

На основании теории движения твердого тела можно утверждать, что относительным движением в этом случае будет вращательное движение вокруг центра колеса О. Найдем скорость этого движения. Воспользуемся той частью условия задачи, где сказано, что колесо катится по рельсу без скольжения. На основании определения понятия качения без скольжения ( 66) приходим к выводу, что абсолютная скорость точки С касания колеса и рельса равна нулю. Следовательно, переносная у и относительная у скорости точки С колеса равны по величине и противоположны по направлению (рис. 51). Значит, относительная скорость точки С равна по величине Уо, так как Уо — переносная скорость.  [c.139]


Итак, рассматриваемое абсолютное движение твердого тела эквивалентно вращению вокруг мгновенной оси, проходящей через мгновенный центр Р, с абсолютной угловой скоростью, равной геометрической сумме переносной и относительной угловых скоростей.  [c.315]

Аналогично можно рассмотреть частный случай движения твердого тела, имеющего одну неподвижную точку. В этом случае, очевидно, ни относительное, ни переносное движение не может быть поступательным, так как скорость одной точки тела всегда остается равной нулю движение тела можно рассматривать как вращение тела относительно оси, которая сохраняет неизменным свое положение по отношению к телу и в свою очередь вращается относительно оси, неподвижной в пространстве. При этом линейная скорость каждой точки тела равна геометрической сумме линейных скоростей относительного движения данной точки тела (вращения вокруг неизменной оси) и переносного движения (вращения неизменной по отношению к телу оси относительно другой оси, неподвижной в пространстве). В этом случае результирующее ( абсолютное ) движение тела представляет собой вращение с угловой скоростью, равной геометрической сумме угловых скоростей относительного и переносного движений.  [c.61]

Допустим, что движение осей Охуг, по отношению к которым надо исследовать относительное движение твердого тела, является вращением с постоянной угловой скоростью <0 вокруг неподвижной оси АВ. Допустим, кроме того, что ось Ог, проведенная через центр тяжести G параллельно оси вращения, является главной осью инерции для точки G. Тогда переносные силы инерции приведутся к одной равнодействующей, равной центробежной силе, которой обладала бы вся масса, если бы она была сосредоточена в центре тяжести О.  [c.244]

Проведем через нее три подвижные оси, движущиеся поступательно. Тогда движение твердого тела может быть разложено на движение по отношению к подвижным осям Охуг и переносное, которое будет поступательным и определяется движением точки О тела. Сложное центробежное ускорение равно нулю в случае поступательного переносного движения поэтому ускорение точки М тела равно геометрической сумме относительного ускорения, равного ускорению при движении тела вокруг неподвижной точки, и переносного ускорения, представляющего собой ускорение точки О. Пусть w—ускорение точки О, и р, q, /- — проекции на оси переменного вращения w тела проведем ось z параллельно оси вращения в рассматриваемом ее положении и в сторону вектора (о тогда проекции абсолютного ускорения точки /И (с координатами х, у, г) будут  [c.111]

В предыдущем параграфе мы установили, что движение твердого тела в общем случае можно разложить на два движения 1) поступательное движение, скорость которого равна скорости со точки О (переносное движение), и 2) движение вокруг этой точки  [c.346]

Сложение поступательного и вращательного движений. Винтовое движение. Рассмотрим сложное движение твердого тела, слагающееся из поступательного и вращательного движений. Соответствующий пример показан на рис. 235. Здесь относительным движением тела J является вращение с угловой скоростью ю вокруг оси Аа, укрепленной на платформе 2, а переносным-поступательное движение платформы со скоростью V. Одновременно в двух таких движениях участвует и колесо 3, для которого относительным  [c.238]

Из теоремы о сложении движений вытекает следствие всякое движение твердого тела складывается из поступательного переносного движения и относительного движения — вращения тела вокруг начала подвижной системы координат. В самом деле, пусть начало подвижной системы координат точка С совпадает с точкой Р твердого тела, а оси Сух, Су- , Су параллельны во все время движения соответствующим осям неподвижной системы координат 04i 2 3. Тогда Vp =0, 2e = ii = 0. Переносная скорость точки Л/а относительная = i xPM, т.е. соотношение А/ = V/. + 2 X РМ (формула Эйлера) выражает теорему сложения движений.  [c.34]


Определим абсолютное движение тела, получающееся при сложении двух вращательных движений вокруг пересекающихся осей. Пусть твердое тело одновременно вращается вокруг двух мгновенных осей, пересекающихся в точке О (рис. 407), причем его вращение вокруг оси ОК является переносным, а вокруг оси 0L — относительным вращением. Предположим, что угловая скорость переносного вращения тела равна а относительного вращения —  [c.323]

Если твердое тело одновременно участвует в двух вращениях вокруг пересекающихся осей, то одно из этих движений принимается за переносное вращение, а второе — за относительное. Обозначая мгновенные угловые скорости переносного движения через о,, и относительного движения через можно  [c.480]

Рассматривая вращательное движение вокруг оси как относительное движение, а поступательное движение как переносное движение, скорость любой точки V твердого тела запишем в виде  [c.38]

Любое движение свободного твердого тела, таким образом, можно заменить совокупностью поступательных движений вместе с какой-либо точкой тела и вращений вокруг этой точки, совершаемых за то же время, что и истинное движение. Поступательное движение вместе с точкой тела и подвижной системой координат Ах[у[г является переносным движением, а движение тела относительно этой подвижной системы координат, являющееся в каждый момент времени вращением вокруг своей мгновенной оси, проходящей через эту подвижную точку тела, есть относительное движение.  [c.177]

Угловую скорость и угловое ускорение относительного вращательного движения вокруг какой-либо точки тела называют в общем случае угловой скоростью и угловым ускорением свободного твердого тела. Эти величины не зависят от выбора точки тела. От выбора точки тела зависит только переносное поступательное движение тела.  [c.178]

Уравнения (20) являются кинематическими уравнениями движения свободного твердого тела в общем случая его движения. Этих уравнений шесть, т. е. столько, сколько степеней свободы у свободного твердого тела. Первые три уравнения (20) определяют переносное движение тела вместе с точкой О, вторые три уравнения определяют вращательное движение вокруг этой точки.  [c.179]

Пользуясь выражениями для скоростей точек твердого тела при его движении вокруг неподвижной точки и в общем случае движения тела в пространстве, можно установить правило нахождения абсолютного ускорения точки в ее сложном движении в общем случае — теорему о сложении ускорений для точки. Эта теорема доказана в частном случае, когда переносное движение принято поступательным.  [c.181]

Объединяя все случаи сложения мгновенных вращений твердого тела, заключаем, что приведение к простейшему движению мгновенных вращений тела как вокруг пересекающихся, так и вокруг параллельных осей аналогично приведению пространственной системы сходящихся и параллельных сил в статике твердого тела, причем относительная и переносная угловые скорости соответствуют приводимым силам, а абсолютная мгновенная угловая скорость соответствует равнодействующей силе.  [c.197]

Доказанная теорема справедлива и для конечных и для бесконечно малых перемещений. Отсюда вытекает сделанный ранее вывод о разложении движения свободного твердого тела в общем случае на переносное поступательное движение вместе с полюсом О и относительное сферическое движение вокруг мгновенной оси вращения ОР, проходящей через этот полюс.  [c.396]

Случай, когда скорость поступательного движения параллельна оси вращения (винтовое движение тела). Если твердое тело вращается вокруг неподвижной оси Ог с постоянной угловой скоростью ш (относительное движение) и одновременно перемещается поступательно с постоянной скоростью V, направленной вдоль этой оси (переносное движение), то составное движение тела в этом случае называется  [c.434]

Если твердое тело вращения, закрепленное в одной из точек своей оси, совершает вокруг нее весьма быстрое вращательное движение и. если подвижная система отсчета совершает равномерное переносное вращение вокруг неподвижной оси, проходящей через закрепленную точку, с небольшой по величине угловой скоростью, то момент относительно этой точки фиктивных сил, которые нужно ввести при рассмотрении относительного движения тела, приводится в основном к моменту одной только силы, приложенной к точке оси тела и стремящейся привести ось относительного вращения к совпадению по направлению с осью переносного вращения.  [c.178]

Пусть данное твердое тело вращается вокруг неподвижной оси я с угловой скоростью (й (относительное движение) и в то же время перемещается (вместе с подвижной системой отсчета) поступательно со скоростью и, направленной вдоль -этой оси (переносное движение). Векторы ш и и в этом случае направлены по одной прямой (рис. 259). Такое движение тела называется винтовым.  [c.361]

В основе всей динамики твердого тела лежат уравнения Эйлера, предложенные им в 1767 г. Уравнения эти определяют движение твердого тела около неподвижной точки и имеют место при произвольном движении твердого тела, так как самое общее движение твердого тела может быть представлено в виде суммы переносного поступательного движения, определяемого движением центра масс тела, и относительного движения тела вокруг центра масс. Центр масс твердого тела движется так, как если бы в нем была сосредоточена вся масса тела и приложены все действующие на тело силы. Относительное движение твердого тела вокруг центра масс определяется теоремой об изменении момента количества движения относительно осей Кёнига.  [c.368]


Тело, участвующее в двух вращениях вокруг пересекающихся осей, имеет неподвижную точку, расположенную на пересечении осей. Оно вращается вокруг неподвижной точки, т. е. соверщает сферическое движение. Таким образом, сферическое движение твердого тела можно считать состоящим из двух вращений вокруг пересекающихся осей переносного и относительного.  [c.207]

Вращение вокруг мгновенной оси должно иметь такое направление, чтобы скорость точки О имела такое же направление, что и скорость V. Отсюда получаем совпадение направлений вращения относительного и абсолютного вращений. Следовательно, fi = (o. Таким образом, при сложении поступательного переносного и вращательного отпоеительного движений твердого тела, у которого скорость поступательного движения перпендикулярна оси относительного вращения, жвивалептное абсолютное движение является вращашем вокруг мгновенной оси, параллельной оси относительного вращения с угловой скоростью, совпадающей с угловой скоростью относительного вращения.  [c.296]

Рассмотрим сложное движение твердого тела, слагающееся из поступательного и вращательного движений. Соответствующий пример показан на рис. 207. Здесь относительным движением тела I является вращение с угловой скоростью а вокруг оси Аа, укрепленной на платформе 2, а переносным— поступательное движение платформы со скоростью v. Одновременно в двух таких движениях участвует и колесо 3, для которого относительным движением является вращение вокруг его оси, а переносным — движение той же платформы. В зависимости от значения угла а между векторами w и V (для колеса этот угол равен 90°) здесь возможну три лyчa , 176  [c.176]

Одним из видов сложного движения твердого тела является вращение вокруг подвижной оси уу, которая, в свою очередь, вместе с телом, вращается вокруг неподвижной оси хх, параллельной уу. В этом случае сложное движение тела можно рассматривать как абсолютное вращение вокруг оси гг, параллельной данныг.1 осям. Относительное и переносное вращения могут происходить в одну и разные стороны. Рассмотрим различные случаи.  [c.186]

В это.м случае переносное движение является одним из движений тв ёрйого тела поступательным движением, вращением твердого тела вокруг неподвижной оси, плоским движением, вращением твердого телЙ вокруг неподвижной точки, общим случаем движения твердого тела.  [c.646]

Применяя общие теоремы динамики в абсолютном движении, дифференциальное уравнение вращения твердого тела вокруг неподвижной оси, дифференциальные уравнения плоского движения твердого тела, уравнения Лагранжа, часто в число рассматриваемых сил ошибочно включают силы инерции. Следует помнить, что силами инерции следует пользоваться только в случае применения а) метода кинетостати> ч, б) общего уравнения динамики, в) уравнений и общих теорем в относительном (либо переносном) движении материальной точки или материальной системы.  [c.581]

Какой вид имеет выражение абсолютного ускорения точкя в случае, когда перекосное движение представляет собой свободное движение твердого тела, и в с.пучае. когда переносное движение является вращением вокруг неподвижной оси  [c.249]

Переносное ускорение вычисляется методами кинематики твердого тела. Если относительная система O x y z движется поступательно или вращается вокруг неподвижной оси, то применяются простые приемы гл. XIII, в случае плоского движения относительной системы — приемы гл. XIV-и, наконец, для более сложных случаев вращения вокруг неподвижного центра и общего движения относительной системы придется использовать методы, изложенные в гл. XV и XVI.  [c.308]

Проведем через точку О твердого тела три взаимно перпендикулярные оси Охуг, движущиеся вместе с точкой О поступательно со скоростью, равной скорости и точки О, Движение тела по отношению к этим осям есть мгновенное вращение м вокруг оси, проходящей через точку О, так как относительная скорость этой точки равна нулю. Переносное движение есть поступательное движение со скоростью это и будут два составляющие движгния, указанные в формулировке теоремы.  [c.73]

Определение оси Моцци при помощи скоростей трех точек твердого тела. — Пусть v, v и v" — скорости трех точек А, В к С (не лежащих на одной прямой). Двин<ение твердого тела складывается из переносного поступательного движения со скоростью v точки А и из относительного вращательного движения вокруг этой точки.  [c.74]


Смотреть страницы где упоминается термин Движение твердого тела вокруг переносное : [c.211]    [c.304]    [c.323]    [c.226]    [c.8]    [c.191]    [c.34]    [c.65]    [c.229]    [c.58]    [c.286]   
Теоретическая механика (1986) -- [ c.76 ]



ПОИСК



Движение переносное

Движение твердого тела

Движение твердого тела вокруг

Движение твердых тел

Движение тела переносное



© 2025 Mash-xxl.info Реклама на сайте