Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прессование — Характеристика

В сочетании с горячим изостатическим прессованием прочностные характеристики увеличиваются на 15 - 20 %, долговечность при малоцикловой усталости повышается в 2 раза, предел усталости — на 65 - 80 %.  [c.418]

Для получения высоких прочностных характеристик КПМ используют более сложные технологические процессы, включающие двойное (тройное) прессование, калибровку, горячее прессование, горячую объемную штамповку и т. д. Физико-механические свойства наиболее распространенных углеродистых порошковых сталей различных подгрупп плотности приведены в табл. 7.2.  [c.175]


Детали из пластмасс широко используются как электроизоляционные, конструкционно-изоляционные и чисто конструкционные. Особенно широко они применяются в производстве электрических аппаратов и приборов, в том числе высокочастотных, а также мелких электрических машин. Широкому применению пластмасс способствует все увеличивающаяся их номенклатура и разнообразные ценные свойства, а также особенность технологии получения деталей из пластмасс. Некоторые пластмассы имеют весьма высокие электроизоляционные свойства и могут применяться при сравнительно высоких напряжениях и высоких частотах другие имеют настолько высокие механические характеристики, что могут применяться взамен конструкционных деталей из различных металлов и сплавов. При этом облегчается масса изделий, повышается эксплуатационная надежность аппаратуры с точки зрения вероятности пробоя изоляции, повышается коррозионная стойкость. Очень ценным технологическим свойством пластмасс является возможность получения за одну операцию прессования деталей весьма сложной формы, часто с запрессовкой металлических деталей.  [c.194]

Для определения основных механических характеристик пластмасс проводят испытания на растяжение, сжатие, статический изгиб, твердость и на ударный изгиб. Образцы для испытаний могут быть изготовлены механической обработкой из плит, листов, прессованием, литьем под давлением и другими способами формования. Способ и режим изготовления образцов устанавливаются техническими нормами на пластмассы.  [c.158]

Во многих деталях и конструкциях используются металлы и сплавы в деформированном состоянии (после прессования, прокатки или ковки), что обусловлено в некоторых случаях необходимостью получить более высокие прочностные характеристики материала в готовом изделии, а иногда с невозможностью провести термообработку, например, крупногабаритных конструкций. Поэтому актуальной задачей является определение ресурса пластичности деформированных сплавов, а для ОЦК-металлов еще и исследование условий их вязко-хрупкого перехода при повторном деформировании.  [c.174]

Повышение работоспособности технологической оснастки для производства стеклянных изделий прессованием может быть достигнуто за счет применения защитных покрытий. Определение эффективности покрытий требует установления некоторых основных эксплуатационных характеристик в условиях периодического контакта с расплавом стекла.  [c.68]


Специалисты по технологии производства композитов с алюминиевой матрицей придерживаются общей точки зрения относительно оптимальных условий изготовления композита. Если поддерживать, постоянство двух из трех параметров технологического процесса— температуры, давления и продолжительности обработки, то с ростом значения третьего параметра прочность при растяжении вначале растет, затем проходит через максимум и потом снижается. Эти данные согласуются с моделью, предполагающей, чтО на поверхности раздела имеется окисная пленка. Рост прочности при растяжении объясняют уменьшением пористости и улучшением окисной связи между матрицей и волокнами. Снижение прочности при растяжении с увеличением давления, температуры или продолжительности процесса происходит из-за общего разрушения окисной связи и излишнего развития реакции. Оптимальное значение параметров отвечает равновесию между завершением процесса образования связи и началом развития локальной реакции на участках разрушения пленки. При повышенной температуре или продолжительности процесса прессования разрушение пленки может происходить по механизму сфероидизации, а при повышенном давлении — механическим путем вследствие сдвига. Однако наличие оптимальных значений параметров процесса приводит к заметным изменениям состава и строения поверхности раздела. Эти изменения имеют место как в пределах одного образца композита, так и от одной партии горячепрессованного композита к другой, поскольку трудно тщательно контролировать состояние поверхности компонентов, технологические циклы и все остальные параметры, определяющие характеристики поверхности раздела.  [c.170]

Чувствительность к надрезу сварных соединений, выполненных с присадкой проволоки сплава 5356, значительно ниже, чем у основного материала прессованных профилей и плит сплава 7005 (см. табл. 1), а удельная энергия распространения трещины для сварных соединений находится в пределах значений этой характеристики для основного материала плит. Интервал этих значений одинаково данными для сварных соединений плит сплава 5083, выполненных с присадкой сплава 5183, хотя прочность сварных соединений этого сплава гораздо ниже [12]. Данные по свойствам сварных соединений сплава 7005 при 4 К пока отсутствуют. Предполагается, что сварные соединения, выполненные с присадкой сплава 5039, будут иметь более высокую чувствительность к надрезу, чем при использовании присадки сплава 5356.  [c.174]

Дополнительную информацию об относительных характеристиках разрушения отливок из указанных выше сплавов можно получить при построении графиков зависимости отношения а /оо,2 от Oo.s при различных температурах, как это показано на рис. 5. На рисунке показана также область значений этого отношения для различных полуфабрикатов из деформируемых алюминиевых сплавов (плит, прессованных полуфабрикатов, поковок).  [c.201]

Повышенное сопротивление расслаивающей коррозии листов плит и прессованных полуфабрикатов сплавов 7075-Т76, 7178-Т76 уже было отмечено. Состояние Т76 может существенно повысить служебные характеристики полуфабриката в тех областях применения, где другие защитные меры не достаточны. В настоящее время разработаны новые высокопрочные материалы плакировок 7011 [192, 195—197] и 7008 [4] для высокопрочных сплавов серии 7000. Новые плакировочные сплавы защищают сплавы серии 7000, содержащие медь, электрохимически. В термообработанном состоянии они приобретают механические свойства, близкие к свойствам основного металла, в противоположность обычной не подвер-  [c.278]

Механические свойства графитов не зависят от направления прессования, но величина давления прессования сказывается на характеристике материала (табл. 5).  [c.14]

Сравнительная характеристика заготовок деталей, отлитых под давлением и прессованных из пластмасс  [c.356]

Основные характеристики прессованного найлона  [c.93]

К факторам экономии металла относятся также мероприятия по дальнейшему совершенствованию конструкций и улучшению характеристики машин по массе. Кроме того, учитываются мероприятия, связанные с заменой материалов по замене проката черных металлов пластмассами, а также алюминиевыми, магниевыми и другими легкими сплавами, по расширению применения металлокерамики и прессованной древесины, по замене литых заготовок штампованными и сварными из проката, по расширению внедрения высокоточного литья.  [c.175]


В пятом томе Неметаллические материалы дана краткая характеристика неметаллических материалов изложены общие принципы их выбора при конструировании деталей машин приведены сведения о физико-механических и технологических свойствах конструкционных, композиционных, оптически прозрачных, газонаполненных пластмасс, литьевых, прессованных, пленочных, листовых термопластов  [c.8]

Если к шаровым твэлам не предъявляют жестких требований ни по размерам при изготовлении, ни по изменению размеров в процессе эксплуатации, то прессованные твэлы являются более выгодными, поскольку стоимость их изготовления меньше, чем стоимость изготовления сборных твэлов, особенно при массовом выпуске. Шаровая форма твэлов, по сравнению со всеми другими формами, обладает еще одним важным преимуществом — возможностью использования твэлов одного и того же размера для бесканальных реакторов с разной тепловой мощностью. Шаровые твэлы крупных реакторов могут быть отработаны и всесторонне проверены на опытном реакторе небольшой мощности. Такой путь был использован в ФРГ на опытном реакторе AVR изучено поведение многих тысяч шаровых твэлов, в том числе твэлов промышленного реактора THTR-300, тепловая мощность которого в 15 раз выше опытного. Шаровые твэлы реакторов AVR и THTR отличаются практически только загрузкой топливного и воспроизводящего материала. В табл. 1.5 приведены основные расчетные характеристики шаровых твэлов этих реакторов и результаты испытаний на реакторе AVR [16].  [c.27]

Теплопроводность изотропного графита при облучении при T Mnepaitype выше 600° С на 30—40% ниже, чем теплопроводность без облучения, коэффициент линейного расширения в результате облучения интегральным потоком нейтронов 4-1021 нейтр./см2 при температуре выше 1000°С сначала увеличивается примерно на 20%, а потом уменьшается на 30—75% начального значения. Физико-механические характеристики прессованных сортов графита под влиянием облучения меняются больше, чем изотропных сортов. Изменения происходят в направлениях вдоль и поперек оси прессования или выдавливания, причем эти изменения по осям довольно различи , что практически исключает возможность использования анизотропных сортов графита в виде крупноразмерных блоков в качестве конструкционного материала активной зоны реактора В ГР с призматическими твэлами [6]. Этот факт является весьма важным доказательством преимущества варианта реактора ВГР с шаровыми твэлами, поскольку твэлы при достижении интегрального потока (5—7)-10 нейтр./см и глубине выгорания топлива 10—15 /о выводятся из активной зоны, графитовые же блоки отражателя находятся в зоне существенно меньших температур и потоков нейтронов.  [c.29]

Таблица 25.9. Термоэмиссионные характеристики и срок службы прессованных металлопорисгых оксидно-никелевых катодов [7] Таблица 25.9. Термоэмиссионные характеристики и <a href="/info/55301">срок службы</a> прессованных металлопорисгых оксидно-никелевых катодов [7]
Поликристаллйческие материалы, у которых нет ярко выраженных осей, в силу того что кристаллиты ориентированы произвольно, но обладающие анизотропией магнитных свойств, имеют магнитную текстуру, которая, как правило, наводится путем внешних воздействий на материал (прессование в магнитном поле, прокатка и др.). Текстурованные материалы имеют повышенные магнитные характеристики и широко используются в технике.  [c.91]

Альсифер — тройной сплав, состоящий из алюминия, кремния и железа. Сплав оптимального состава (9,6 % Si, 5,4 % А1, остальное Fe) по своим свойствам не отличается от пермаллоев и имеет следующие характеристики Цгн = 35 500, p-rmax = 120 ООО, — = 18 А/м, р = 0,8 мкОм-м. Такие характеристики получаются только при строгом соблюдении состава, промышленные образцы имеют более низкие характеристики. Альсифер получают как литой, нековкий материал, с высокой твердостью и хрупкостью, поэтому изделия из альсифера изготовляются методом литья с толщиной стенок не менее 2—3 мм. Область применения альсифера — магнитные экраны, корпуса приборов машин, детали магнитопроводов для работы в постоянных или медленно меняющихся магнитных полях. Вследствие того что альсифер хрупок, его можно размалывать в порошок и применять для изготовления прессованных сердечников и магнитодиэлектриков.  [c.97]

Магпитодиэлектрики получили широкое применение при изготовлении прессованных сердечников из ферромагнитных порошков, изолированных диэлектриками (пластмассами), бакелитом, аминопластами, полистиролом. В табл. 22 приведены данные по характеристикам ферро-  [c.602]

В приближенных моделях трехмер-ноармированного материала влияние фактора плотности упаковки волокон на расчетные значения упругих характеристик связывается с заданием объемных коэффициентов армирования. При этом плотность укладки волокон в сечении материала принимается одинаковой во всех направлениях. Такое допущение не всегда может быть оправдано. В частности, для волокнистых материалов, изготовленных прессованием в плоскости 12, расстояния между сечениями волокон вдоль оси 3 могут быть минимальны — полимерные прослойки между слоями, параллельными плоскости 12, практически отсутствуют. При этом коэффициенты армирования р.1, зависят от относи-  [c.127]

Обычно для оценки пористости покрытий используют стандартную методику, применяемую для изделий порошковой металлургии (ГОСТ 18898—73), Однако это не всегда оправдано, так как вместо массивных прессованных и спеченных стандартных образцов приходится испытывать сравнительно небольшие, компактные покрытия, что понижает точность испытаний. В связи с тем что численные значения плотности и пористости покрытий взаимосвязаны, методики их определения имеют много обгцего. Роль плотности, как эксплуатационной характеристики покрытий, сравнительно невелика, и поэтому способы ее определения здесь не рассматриваются. Критический анализ методик определения пористости, плотности и газопроницаемости покрытий приведен в монографии и статьях С. С. Бартенева.  [c.18]


Хотя эти результаты прямо показывают, что существуют оптимальные условия изготовления, обеспечивающие максимальную усталостную прочность, возникает вопрос, являются ли данные условия оптимальными с точки зрения характеристик продольного растяжения, которые и составляют предмет обсуждения настоящей главы. Дэвис [9] изготавливал композит при температурах, близких к тем, которые, по Бэйкеру [1], отвечают оптимуму. Пин-нел и Лоули [25, 26] применяли прессование в области оптимальных температур для получения оптимальной усталостной прочности, однако в изготовленных ими композитах реакция, как правило, не происходила. Можно прийти к общему заключению, что при сходстве условий изготовления, выбранных всеми авторами, состояние поверхности раздела в разных исследованиях не было одинаковым.  [c.177]

Почти все известные термопласты в сочетании с упрочняющими волокнами применяются в деталях, изготовляемых различными методами. При этом назначение детали, требования к ее внешнему виду, условия эксплуатации, а также экономичность и механические свойства оказывают решающее влияние на выбор материалов матриц. Например, термореактивные смолы используют в основном для тех деталей кузова, которые требуют окраски в готовом виде. Термопласты в большей степени склонны к пигментации, поэтому их применяют в формованных деталях, внешнему виду которых придается важное значение. Улучшение физических характеристик деталей из термопластов, изготовляемых методом иижекционного прессования, обычно достигается путем добавления в матрицу умеренного количества волокна-упрочнителя. В случае применения формования прессованием для упрочненных полиэфирных смол показана возможность производства крупных партий деталей больших размеров при сравнительно невысоких затратах. Например, отдельные детали кузова из композиционного материала автомобиля Шевроле Корвет имели размеры 1,8 X 3,0 м при массе около 24 кг.  [c.13]

Как упоминалось ранее, изготовление промышленной оснастки может быть частично завершено на стадии, обеспечиванзщей производство опытного образца с удовлетворительными эксплуатационными характеристиками. Это логический подход, особенно если используются листовые формовочные композиции или пре-, миксы. Следует позаботиться о том, чтобы давления прессованйя и температура обеспечивали получение действительных физикомеханических свойств изделия, так как неточности при изготовлении опытного образца могут привести к отклонению проекта.  [c.402]

Кулли и Поцелуйко [6] провели сравнительные испытания верхних коленчатых рычагов заднего пилона для вертолета СН-47С фирмы Boeing из металла и композиционного материала на основе коротких волокон. Композиционный материал состоял из стекловолокон S-2 (длина отрезка волокна 12,7 мм) с нанесенным на них аппретом и эпоксидной новолачной матрицы. Среди прессованных материалов он показал наилучшие характеристики в испытаниях на допустимое разрушение при баллистическом ударе. Пилоны имели Н-образное сечение, каждая стойка которых образует дополнительную конструктивную часть, способную нести полную нагрузку при разрушении другой. Хотя масса пилона из композиционного материала приблизительно на 20% меньше массы кованой алюминиевой детали, он выдерживал допустимую разрушающую нагрузку.  [c.483]

Ниже мы рассмотрим некоторые достижения в этой области и дадим сравнительную характеристику сверхпластического поведения нескольких ультрамелкозернистых сплавов, полученных двумя способами РКУ-прессованием и интенсивной пластической деформацией кручением.  [c.203]

Данные, приведенные в таблице, получены по результатам измерений, проделанных автором совместно с Е. И. Шиловой и 3. В. Черенковой на образцах, прессованных из слитков. Прессованные заготовки отжигались при температуре 400 °С в течение 2 ч и охлаждались до 280 °С со скоростью 30 °С/ч. Далее образцы толщиной 6 мм прокатывались в холодном состоянии с промежуточным отжигом по тому же режиму, до толщины листов 2 мм. Образцы вырезались в лоперечном направлении по отношению к прокатке. Механические характеристики приведены при температуре закалки 500 С (вводе) и естественном старепии при 170 5°С.  [c.56]

Твердые сплавы, широко применяемые в промышленности в виде режущих и формоизменяющих инструментов, подвергаются разнообразным механическим и термическим переменным нагрузкам. Достаточно указать на реншм прерывистого резания при токарной обработке, на фрезерование, глубокую вытяжку, прессование и штамповку с помощью твердосплавных инструментов. Оптимальное использование соответствующих инструментов требует знания с достаточно высокой точностью характеристик усталостной прочности описанных сплавов [1]. Вследствие хрупкости твердых сплавов при построении кривых Велера необходимо испытывать большое количество образцов, что приводит к повышенному расходу материала и увеличению времени испытаний. В настоящей работе впервые представлены результаты исследований по распространению усталост-  [c.258]

Характеристика поверхностей раздела будет полней, если рассмотреть вопрос о природе сил связи между волокном и матрицей. Тип связи в композиционных материалах, естественно, зависит от технологии их получения. Например, если композиция алюминий—борное волокно получена заливкой пучка волокон расплавленным алюминием, то она относится к третьей группе, и связь в ней осуществляется в результате химической реакции борного волокна с расплавом алюминия волокно частично растворяется с образованием диборида алюминия AlBj. Однако если эта же композиция получена по оптимальной технологии горячего прессования, то она имеет все характеристики псевдопервой группы,  [c.58]

Последствия химического взаимодействия между составляющими в композициях третьей и псевдопервой группы проявляются не только после специальных термических обработок, но и после получения их методом горячего прессования. Большинство исследователей сходится во мнении, что существуют оптимальные параметры получения этих композиций. Если два любых параметра из трех (температура, время, давление прессования) постоянны, то кривая зависимости продольной прочности композиции от третьего переменного параметра имеет максимум. Объяснение такой зависимости будет дано при обсуждении выбора оптимальной температуры прессования композиции алюминий—борное волокно. Проиллюстрируем сказанное графиком (рис. 31) зависимости прочности и деформации до разрушения от температуры прессования композиции Ti — 6% А1 — 4% V — 25% волокон B/Si . Кривые имеют пологий максимум в интервале температур 770—830° С. Снижение механических характеристик композиций, полученных прессованием при высоких температурах, объясняется химическим взаимодействием и разупрочнением волокон.  [c.78]

Химическое меднение. Химическое меднение является одним из немногих способов получения композиционных материалов на основе меди и его сплавов, армированных углеродным волокном. Введение углеродных волокон в медные сплавы целесообразно в некоторых случаях, когда требуется материал с высокими элек-тро- и теплопроводностью, близкими к соответствующим характеристикам меди, но более прочный, с более низким температурным коэффициентом линейного расширения. Кроме того, он может служить и хорошим материалом для высокопрочных, самосмазываю-щихся ПОДЦ1ИИНИКОВ трения. Часто химическое меднение исполь-зуют для улучшения смачиваемости углеродных волокон или нитевидных кристаллов в процессе изготовления композиционных материалов на основе алюминиевых сплавов методом пропитки жидким расплавом, либо в качестве подслоя на этих унрочните-лях, образующего плавящуюся эвтектику в контакте с металлом матрицы, используемым в виде тонких фольг при горячем прессовании.  [c.186]


Предварительный подогрев способствует повышению текучести материала в начальный момент ирессоваии.ч, кроме того, облегчает загрузку, улучшает условия заполнения пресс-формы и снижает износ деталей. Значительное влияние на формирование физико-механических характеристик при прессовании изделия оказывают величина и скорость приложения усилия, время выдержки под нагрузкой и скорость разгрузки.  [c.11]

Никелевый жаропрочный сплав In onel Х750 аустенитно-го класса очень широко используют для жаровых труб, экранов, наружных обшивок корпусов и валов сверхпроводящих генераторов мощностью 5 МВт, разработанных компанией Вестннгауз [1,2]. Для оценки поведения безопасно повреждаемой конструкции такого генератора проведены исследования характеристик разрушения и механических свойств указанного сплава при низких температурах в зависимости от технологии изготовления и режимов термообработки. Изучено влияние трех промышленных методов выплавки и горячего изостатического прессования, а также двух видов термообработки закалки и закалки с последующим двухступенчатым старением.  [c.298]

Неограниченность сырья для получения винипластов, простота его переработки, высокая химическая и достаточная температурная стойкость, возможность изготовления деталей теми же методами формо- и размерообра-зования, что и применяемые для проката (штамповкой, прессованием и сваркой), при сравнительно высоких прочностных характеристиках делают возможным применение винипластов в широких масштабах вместо проката.  [c.326]

Как показали исследования, проводимые в НИИХИММАШе, с увеличением давления прессования фторопласта с комбинированным наполнителем (графит и дисульфид молибдена) от 200 до 800 кГ1см удельный вес материала возрастает от 2,19 до 2,22 кГ1см . Параллельно с определением удельного веса рекомендуется определять и механические характеристики наполненных фторопластов, чтобы выбрать оптимальный режим прессования и термообработки образцов, обеспечивающий получение материала с наименьшей пористостью.  [c.190]

Шток в крышке уплотняется двойным сальником с промежуточным отбором протечек. Сальниковая набивка набрана из прессованных колец шнура сквозного плетения марки АГ-50. Соединение корпуса с крышкой уплотняется зубчатой металлической прокладкой и дублируется обваркой на ус . Пропускная характеристика близка к линейной. Основные детали — корпус, крышка, седло, шибер, тток—выполнены из коррозионно-стойких сталей, резьбовая втулка из бронзы БрАЖ-9-4. Основные характеристики задвижек приведены в табл. 3.24.  [c.136]

Удельный вес — необходимая характеристика для расчета количества порошка, засыпаемого в матрицу прессформы для прессования деталей нужного размера и веса. Расчет удельного веса порошковой смеси производят по формуле  [c.321]

В пятом томе дана краткая характеристика неметаллических материалов, изложены общие принципы их выбора при конструировании деталей машин, приведены справочные сведения о физико-механических и технологических свойствах конструкционных, композиционных, оптически прозрачных, газонаполненных пластмасс, литьевых, прессованных, пленочных, листовых термопластов. В этом же томе даны справочные сведения о лакокрасочных, углеродистых, резиновых, древесных, бумажных, текстильных, асбестовых, силикатных материалах, клеях, коже и ее заменителях, промышленном стекле, ситаллах, стекло-эмали, каменном литье, стекловолокне, стеклоткани, пеностекле, фарфоре, глазури, вяжущих составах, обжиговой керамике, тугоплавких соединениях. Табл. 427, рис. 100, библ. 105 назв.  [c.4]

Специфические свойства той или иной смолы (олигомера), входящей в состав термореактивных пластмасс, определяют не только их рецептуру (необходимость введения отвердителей, количественное содержание того или иного наполнителя и т. п.) и его технологические характеристики (текучесть, параметры прессования — температура, давление, время, величину технологической усадки, количество выделяющихся летучих), но и основные свойства готовой детали (теплостойкость, формо-и размероизменяемость во времени и под действием различных внешних факторов, механическую прочность, химическую стойкость, электроизоляционные свойства и т. п.). В состав большинства пластических масс, кроме полимерного связующего, могут входить отвердители, пластификаторы, наполнители, красители, порообразо-ватели, смазывающие вещества и другие добавки.  [c.12]


Смотреть страницы где упоминается термин Прессование — Характеристика : [c.187]    [c.142]    [c.213]    [c.33]    [c.177]    [c.25]    [c.384]    [c.395]    [c.41]    [c.13]   
Справочник технолога машиностроителя Том 1 (1963) -- [ c.602 ]



ПОИСК



Заготовки деталей машин из пластических масс - Прессование-Характеристика

Литье под давлением — Общая характеристика способа 336, 337 — Особенности прессования 344, 345 — Температурные

Прессование

Прессование Основные характеристики процесса

Прессование — Характеристика порошковой шихты



© 2025 Mash-xxl.info Реклама на сайте