Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Инварианты тензора девиатора

Условие пластичности (2.79) Мизеса не зависит от третьего инварианта тензора-девиатора, т. е. от вида напряженного состояния.  [c.58]

Инварианты тензора девиатора напряжений с учетом (1.116) ir (1.119) принимают вид  [c.31]

Воспользуемся уравнением (1.39) и запишем уравнение поверхности текучести (2.203) в форме, содержащей второй инвариант тензора девиатора напряжений  [c.74]

Инварианты тензора (девиатора которые получаются  [c.24]


Вместе с тем использование интегральных соотношений между напряжениями и скоростями деформации, записанных в матричной форме, позволяет решить другую проблему — линеаризовать краевую задачу. Действительно, в общем случае ядра R i, т) и Ro t т)— функции инвариантов тензоров (девиаторов) напряжений, скоростей деформаций, температуры, степени деформации. Однако, организовав итерационный процесс при численном решении краевой задачи на ЭВМ, можно в каждой очередной итерации считать, что эти величины определены предыдущим приближением. В этом случае определяющие уравнения становятся линейными. Применяя проекционно-сеточные методы решения краевых задач, в конечном счете приходим к линейной системе алгебраических уравнений для определения искомых параметров.  [c.259]

Неймана 58 Инварианты тензора девиатора де-  [c.405]

Предположим дополнительно, что гидростатическое давление (первый инвариант тензора напряжений) не влияет на зависимость между девиаторами напряжений и деформаций. Строго говоря, эта гипотеза неверна, но для многих металлов и сплавов она выполняется с достаточно большой точностью, введение же этой гипотезы позволяет намного упростить построение теории. Пусть, для простоты, отличны от нуля два компонента девиаторов. Тогда процесс нагружения в фиксированной точке тела будет изображаться кривой на плоскости а°, а°, процесс деформирования — кривой на плоскости е , Упомянутая выше зависимость связи напряжений с деформациями от истории нагружения означает, что деформированное состояние в данной точке тела зависит от всей кривой на плоскости а°, (т . Математически этот факт эквивалентен тому, что соотношения между напряжениями и деформациями в пластической области, вообще говоря, будут либо дифференциальными неинтегрируемыми, либо операторными зависимостями. Теории, использующие дифференциальные неинтегрируемые соотношения, известны как теории течения они, как правило, строятся с использованием введенного выше понятия поверхности текучести. Рассмотрим простейший класс операторных теорий, которые применяются только для специального вида процессов нагружения.  [c.267]

Для определения второго инварианта девиатора напряжений воспользуемся выражением для второго инварианта тензора напряжений, подставив в него вместо о, , Оу, разности о . — о р, ср> " ср- После несложных преобразований получим  [c.18]

Три других инварианта девиатора напряжений — линейный, квадратичный и кубичный — связаны с предыдущей тройкой инвариантов девиатора напряжений и могут быть выражены через инварианты тензора (ajj) следующими формулами (см. (1 .77)]  [c.48]


Разница между формулами (7.7.5) и (7.7.7) связана с тем, что компонентами тензоров являются касательные напряжения и половины сдвигов, значит величина То соответствует <,/2. Итак, нормальное и касательное напряжения на октаэдрической площадке представляют первый инвариант тензора напряжений и второй инвариант девиатора наиболее простым и естественным образом.  [c.229]

Угол называется углом подобия девиатора тензора напряжений. Величины о, То и О могут быть приняты за систему инвариантов тензора напряжений, величину легко связать с третьим инвариантом девиатора. Действительно, в главных осях  [c.231]

Для точки тела известен первый инвариант тензора напряжений = 30 кг мм и задан девиатор напряжений  [c.26]

Формулировки критериев разрушения анизотропных сред через инварианты тензора напряжений обусловлены, по-видимому, историческим развитием критериев текучести изотропных материалов. Предположение об изотропии (независимости от направления) означает, что формулировка условий разрушения не зависит от направления осей координат. Наиболее подходящим средством обеспечения указанной инвариантности является запись критерия разрушения в виде скалярной функции от инвариантов тензора напряжений. В опытах Бриджмена [7] было установлено, что условие текучести изотропного материала не зависит от гидростатического давления учет этого обстоятельства позволил дополнительно упростить условие текучести, представив его лишь через компоненты девиатора напряжений.  [c.432]

При введении в рассмотрение третьего инварианта тензора напряжений все эти нежелательные последствия построения анизотропного критерия разрушения по аналогии с критерием разрушения изотропных сред (как это было сделано при учете только второго инварианта) в значительной мере возрастают (впрочем, этого и следовало ожидать). Определенными преимуществами обладают предложенные в различное время различными авторами критерии текучести изотропных сред, включающие второй и третий инварианты девиатора напряжений (/2 и /з) В частности, такой критерий был предложен Кулоном [13] еще в 1773 г. критерий Кулона можно записать в виде  [c.442]

Заметим, что инварианты тензора и девиатора могут быть выражены и через ковариантные либо контравариантные компоненты. Но тогда нужно использовать компоненты метрического тензора. Например, учитывая (1.66), (1.91), формулу (1.96) можно преобразовать к виду  [c.48]

Она также является инвариантом тензора деформации. Девиатор деформации обладает теми же свойствами, что и тензор деформации, но для него ву == вц = 0.  [c.11]

Естественно, что это выражение обращается в нуль при 2 = 0, так как точка наблюдения должна оставаться вне площадки нагружения. Как и для случая неограниченного пространства, вектор напряжения оказался представленным через главный вектор, главный момент, первый инвариант и девиатор силового тензора.  [c.244]

Величины Г и ф, выражающиеся через главные инварианты девиатора, также являются его инвариантами. В некоторых вопросах применение инвариантов /i(Q), Г, ф следует предпочесть главным инвариантам тензора Q.  [c.830]

Хотя в силу (1.88) справедливо равенство контравариантных компонент но и тензор-девиатор т, и его второй инвариант образуются с помощью компонент gij метрического тензора g в материальном текущем базисе, а S и J2 S ) — с помощью компонент gij тензора g в материальном отсчетном базисе (см. (2.87)). Поэтому в общем случае  [c.101]

Тензор А == А—где Ai — первый инвариант тензора А, называется девиатором тензора А. У девиатора первый инвариант равен нулю.  [c.10]

Здесь К — модуль сжатия, а Л — скалярный оператор двух инвариантов тензора деформации. Предположим, что соотношения (1.1) обращаются, т.е. можно выразить компоненты девиатора тензора деформации через напряжения  [c.118]

Перейдем от девиаторов активных и добавочных напряжений к их тензорам и повторим процедуру построения определяющих уравнений, приняв в качестве эквивалентного активного напряжения величину s , равную сумме линейного s и квадратичного s инвариантов тензора активных напряжений и тензоров анизотропии b j и ацы  [c.108]


Учёт влияния инвариантов тензора и девиатора напряжений на процесс накопления повреждений содержится в работах [34, 35]. Учёт же влияния параметра вида добавочного напряжённого состояния на процесс накопления повреждений рассматривается в работах [2, 3].  [c.57]

Здесь — длина дуги неупругой деформации (накопленная неупругая деформация оц — — первый инвариант тензора напряжений ji — параметр вида активного напряжённого состояния G G [—1, 1] при сжатии fi — —1, при сдвиге = О, при растяжении = = +1 сг — интенсивность активных напряжений h D ) и /з(-О ) соответственно второй и третий инварианты девиатора активных напряжений qe,q T,q ,qR — функции подлежащие экспериментальному определению.  [c.119]

Аналогично обстоит дело и с соотношениями (11.2). Если мы возьмём квадратичный инвариант девиатора напряжений (10.28), заменим в нём разности напряжений из (11.2) и учтём выражение (7.12) для квадратичного инварианта тензора скоростей деформации, то получим  [c.65]

Таким образом, обобщённая гипотеза Ньютона сводится к линейному соотношению (11.20) линейных инвариантов тензоров напряжений и скоростей деформации и к линейному соотношению (11.21) квадратичных инвариантов девиаторов напряжений и скоростей деформаций. Это обстоятельство указывает на то, что обобщённая гипотеза Ньютона обладает свойством инвариантности, т. е, она не зависит от выбора системы координат. Наконец,  [c.65]

Более общий результат следует из того, что условие (1.2) при Тгв = Тгср = О соответствует обращению в нуль третьего инварианта тензора девиатора напряжений, поэтому любое условие предельного равновесия изотропных сред в случае сферического деформированного состояния сводится к виду  [c.242]

Здесь G — функция инвариантов тензора или efj. При рассмотрении конкретных примеров авторы считали, что G зависит только от второго инварианта девиатора тензора Sy и в уравнении (16.7.3) фигурируют компоненты девиаторов. При интерпретации этого уравнения тензор Sy рассматривают как тензор внутренних самоуравновешенных напряжений, точнее — как некоторую интегральную меру этих напряжений, возникающих в кристаллических зернах.  [c.554]

Некоторые из упомянутых ограничений можно снять, записав критерий разрушения через инварианты тензора напряжений, а не через инварианты девиатора. Те выгоды, которые появляются при таком подходе, приходится оплачивать преодоле-  [c.436]

В главе VI было показано, что первый инвариант тензора деформации равен относительному изменению объема тела в окрестности рассматриваемой точки тела. Так как у девиатора деформации первый инвариант равен нулю, его компоненты характеризуют изменение лишь формы элемента (без изменения его объема). Та доля полной величины компонентов напряжений, которая входит в шаровой тензор напряжения, приводит к изменению лишь объема элемента, без изменения его формы. Вследствие же воздействия на элементостальной части полной величины компонентов напряжений, т. е. части, входящей в девиатор напряжения, происходит изменение лишь формы элемента, без изменения его объема.  [c.505]

Для построения моделей упругопластического тела в настоящее время применяют теории течения и малых упругопластических деформаций (последняя является следствием теории течения, применимой при простом нагружении). Простым нагружением называют процесс, при котором в каждой точке тела компоненты девиатора оД теюора напряжений Д = а- а Е изменяются пропорционально. Здесь То = = (l/3)/i(a) = (1/3) --а - среднее напряжение Л(5) - первый инвариант тензора напряжений а.  [c.69]

Переход к сложному напряжённому состоянию осуществляется обычно принятием одной из двух гипотез для деформаций ползучести в первом случае принимается, что тензор деформаций ползучести p j пропорционален девиатору тензора напряжений pij = XSij, во втором принимается гипотеза о пропорциональности тензора скоростей деформаций ползучести ру тому же девиатору 8 у Первая — деформац, вариант, вторая — теория течения для сложного напряжённого состояния. Параметр X определяется как отношение соответствующих инвариантов тензоров деформаций ползучести и напряжений, для определения к-рых принимаются системы (1) и (2), куда в качестве параметров могут войти произвольные инварианты тензоров напряжений и деформаций.  [c.10]

Зга гипотеза с высокой точностью выполняется, например, для непористых металлических материалов. Соотношение (2.7.1) означает, что тензор деформахщй ползучести и тензор скоростей являются девиаторами. Поэтому в соотношениях между деформациями ползучести и напряжениями для таких материалов не учитывают первый инвариант тензора напряжений.  [c.119]

Инварианты тензора скорости деформации. Инварианты тензора Г и девиатора D. можно иолучить из формул (2.7), (2.9) заменой е .,. .., у л на > isx- Выпишем лишь выражение ин-  [c.22]

Предположение о несжимаемости материалов при ползучести с большой степенью точности выполняется для большинства металлов и сплавов. Однако при этом допущении не удается описать такое часто встречающееся у легких металлов и их сплавов явление, как неодинаковость поведения при растяжении и сжатии. Это связано с тем, что в рамках тензорно-линейных уравнений состояния, записанных выше, не учтено влияние на ползучесть нечетного инварианта тензора напряжений. Для учета разносопротивляемости при ползучести большинство авторов используют первый инвариант тензора напряжений [71, 137]. Имеются работы, где для этих целей привлекается третий инвариант девиатора напряжений [58, 177]. Различные реологические модели сред и их практическое применение при расчетах элементов машиностроительных конструкций рассмотрены в монографии [166]. Следует отметить исследования, проведенные в работе [137], предоставляющие широкие возможности для построения соотношений теории ползучести, учитывающих разнообразные эффекты, свойственные современным конструкционным материалам.  [c.108]


Здесь s j — Sij — ttij — девиатор активных напряжений Sij — деви-атор напряжений ац = 1 Та) — первый инвариант тензора напряжений — параметр вида активного напряжённого состояния Еи — накопленная пластическая деформация. Тензор добавочных напряжений (остаточных микронапряжений) aij характеризует смещение поверхности нагружения в девиаторном пространстве напряжений и является функционалом процесса нагружения. Функция Ср ац, ii , u ) задаёт форму поверхности нагружения в зависимости от параметров, которые  [c.54]


Смотреть страницы где упоминается термин Инварианты тензора девиатора : [c.126]    [c.164]    [c.53]    [c.300]    [c.487]    [c.83]    [c.319]    [c.10]    [c.50]    [c.21]    [c.155]    [c.119]    [c.18]    [c.56]   
Механика слоистых вязкоупругопластичных элементов конструкций (2005) -- [ c.26 , c.27 , c.29 ]



ПОИСК



Главные оси и главные деформации. Инварианты тензора и девиатора деформаций

Главные площадки и главные напряжения. Инварианты тензора и девиатора напряжений

Девиатор тензора

Инвариант

Инварианты тензора

Инварианты тензора девиатора девиатора напряжений

Инварианты тензора девиатора деформаций

Инварианты тензора девиатора напряжений

Инварианты тензора девиатора шарового деформаций

Инварианты тензора девиатора шарового напряжений



© 2025 Mash-xxl.info Реклама на сайте