Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Наклеп деформационный

Пластическая деформация поверхностного слоя сопровождается увеличением числа дефектов и искажением кристаллической решетки, изменением субструктуры и микроструктуры металла поверхностного слоя. В металле поверхностного слоя резко возрастает количество дислокаций, вакансий и других несовершенств кристаллической решетки, повышая его напряженность. Взаимодействие полей напряжений дислокаций между собой и с другими дефектами решетки затрудняет движение дислокаций, сопротивление пластической деформации возрастает, металл упрочняется (наклеп, деформационное или механическое упрочнение). Число дефектов в кристаллической решетке поверхностного слоя зависит от степени пластической деформации. Степень деформации, а следовательно, и число дефектов в решетке по глубине поверхностного слоя переменные, они уменьшаются с его глубиной.  [c.50]


Рассмотрена деградация механических свойств конструкционных сталей в условиях действия технологических и эксплуатационных (температура, давление, среда и т.п.) факторов охрупчивания. Приведены механические, структурные и фрактографические особенности развития и обнаружения таких эксплуатационных видов охрупчивания, как наклеп, деформационное, тепловое водородное и радиационное охрупчивание, водородная коррозия, графитизация, науглероживание, азотирование и другие. Впервые приведены диагностические карты опознания видов хрупкости, выявляемых разрушающими и неразрушающими методами диагностирования.  [c.2]

Итак, для непрерывного продолжения деформации образца требуется постоянное увеличение действующих на него напряжений. Это явление называется деформационным упрочнением. Оно проявляется не только в процессе испытания. Известно, например, что после предварительной холодной деформации прочностные характеристики материала повышаются (явление наклепа). Деформационное упрочнение обусловлено торможением дислокаций. Чем труднее перемещаться дислокациям в материале, тем больше коэффициент модуль) деформационного упрочнения — производная напряжения по деформации, характеризующий наклон кривой растяжения. В процессе испытания этот коэффициент меняется и его изменения в конечном итоге определяют геометрию диаграммы растяжения. Для строгого анализа закономерностей деформационного упрочнения необходимо пользоваться не первичными диаграммами в координатах нагрузка — удлинение, а вторичными кривыми в координатах истинное напряжение (5 или О —деформация е или ). Поскольку пластическая деформация скольжением в металлах осуществляется за счет движения дислокаций в определенных плоскостях под действием касательных, а не нормальных напряжений, более правильно строить кривые 1 — . На практике в этих координатах строят диаграммы растяжения монокристаллов, используемые в теоретических работах для выяснения принципиальных во-просов деформационного уп- га  [c.111]

Увеличение прочности при деформационном старении является результатом совместного действия двух факторов наклепа (увеличение плотности дислокаций) и измельчения блоков мартенсита.  [c.176]

Термин деформационное упрочнение применяется вместо отмененного наклеп .  [c.24]

Вторым способом уменьшения вероятности трещинообразования в упрочняемой стали является смягчение деформационного режима при прокатке или ковке (например, прокатка в несколько проходов с промежуточными подогревами). Применение данного способа становится возможным благодаря явлению обратимости ТМО, т. е. сохранению наследственного упрочняющего влияния наклепа даже после перекристаллизации стали [97].  [c.71]


Влияние упрочнения поверхности. Для повышения несущей способности деталей широко используют разные способы поверхностного упрочнения цементацию, нитроцементацию, азотирование, поверхностную закалку токами высокой частоты (т. в. ч.), деформационное упрочнение (наклеп) накаткой роликами или дробеструйной обработкой. Упрочнение поверхности деталей значительно повышает предел выносливости, что и учитывается к оэффициентом влияния поверхностного упрочнения Км (табл. 0.4).  [c.15]

Во-первых, эта операция приводит к снижению пластичности при длительном разрыве и оказывает влияние на сопротивление разрушению при ползучести. Снижение деформационной способности в результате наклепа способствует повышению вероятности преждевременных (по сравнению с расчетным сроком) разрушений металла при возникновении колебаний температурно-силовых режимов в условиях длительной эксплуатации.  [c.24]

Другим типом примеси в металле является водород, энергия взаимодействия которого с дислокациями в железе (0,1 эВ) значительно меньше, чем для углерода и азота, и который поэтому не вытесняет атомов углерода и азота из облаков на дислокациях. Сравнительно менее значительное влияние водорода в железе на деформационное упрочнение путем изменения подвижности дислокаций не означает, однако, отсутствие заметного влияния поглощенного водорода на механохимическую активность, поскольку при абсорбции металлом водорода в металле возникают значительные остаточные напряжения и локальный наклеп, стимулирующие анодное растворение. Так, по данным рентгеновских исследований электролитически наводороженного железа вакуум-116  [c.116]

Применение поверхностного наклепа сопровождается образованием в поверхностном слое остаточных напряжений сжатия из-за неравномерности пластической деформации, а также изменением прочностных свойств поверхностного слоя, связанным с деформационным упрочнением материала (увеличением прочности и плотности, уменьшением пластичности). Проведенные нами исследования, как и данные других авторов, показывают,  [c.155]

Положительный эффект поверхностного наклепа при малоцикловой усталости был экспериментально установлен для широкой номенклатуры машиностроительных материалов (сталей, алюминиевых сплавов, сплавов титана). Наибольший эффект увеличения сопротивления малоцикловой усталости от поверхностного наклепа достигается для малопластичных и склонных к деформационному старению сталей.  [c.165]

Вследствие увеличения количества дислокаций, вакансий и других дефектов кристаллической решетки и их взаимодействия между собой сопротивление пластической деформации по мере ее развития возрастает, материал упрочняется (наклеп или деформационное упрочнение). Деформационное упрочнение характеризуется увеличением предела упругости, предела текучести, предела прочности, твердости, снижением пластичности (уменьшается относительное удлинение, относительное сужение) и повышением хрупкости (ударная вязкость уменьшается).  [c.29]

Деформационное упрочнение (наклеп) поверхностного слоя оценивают глубиной и степенью наклепа а интенсивность наклепа по глубине поверхностного слоя — градиентом наклепа и р, являющимся особенно важным параметром поверхностного наклепа после окончательной и отделочной обработки поверхностей силовых деталей  [c.53]

Деформационное упрочнение (наклеп) Глубина наклепа Степень наклепа К Ын МКМ %  [c.64]

Деформационное упрочнение (наклеп) поверхностного слоя в процессе механической обработки подчиняется общим закономерностям упрочнения металлов при их пластической деформации в холодном состоянии, т. е. при температурах, меньших температуры рекристаллизации.  [c.111]

С увеличением степени деформаций увеличивается и количество дислокаций, при этом становится все труднее сдвинуть каждую из дислокаций из занимаемого ею положения, так как притяжение ее ближайшими соседними дислокациями противоположного знака возрастает. В этом случае для передвижения отдельной дислокации необходимо приложить дополнительную силу, т. е. сопротивление скольжению в кристаллах возрастает. Увеличение усилия, необходимого для преодоления сопротивления скольжения в кристаллах, проявляется как деформационное упрочнение (наклеп).  [c.112]


Деформационное упрочнение поверхностного слоя после механического полирования незначительное как по интенсивности, так и по глубине проникновения в поверхностный слой. Так, в жаропрочных сплавах наклеп от виброконтактного полирования после ЭХО характеризуется /t = Юн-20 мкм и = 5-i-10%.  [c.129]

Физическое состояние поверхностного слоя деталей и его напряженность, обусловленные механической обработкой, оказывают существенное влияние на эксплуатационные свойства и прежде всего на их усталостную прочность. Остаточные напряжения и деформационное упрочнение поверхностного слоя в условиях циклического нагружения и рабочих температур могут положительно и отрицательно влиять на сопротивление материала усталости. В связи с этим представляет большой научный и практический интерес изучение устойчивости поверхностного наклепа и остаточных макронапряжений после механической обработки в зависимости от температуры и продолжительности нагрева.  [c.131]

Устойчивость поверхностного наклепа при нагреве и действии внешней нагрузки. Известны единичные работы, в которых изучалась устойчивость деформационного упрочнения поверхностного слоя после механической обработки, однако результаты их оказались противоречивыми даже для случая длительного хра-  [c.139]

Степень наклепа поверхностного слоя в процессе изотермических нагревов непрерывно изменяется, уменьшаясь с повышением температуры и продолжительности нагревов. Заметное изменение микротвердости в образцах из жаропрочных сплавов наблюдается при 700—750° С и выше. При нагревах с более низкими температурами деформационное упрочнение поверхностного слоя в этих сплавах достаточно устойчиво.  [c.158]

Резкое изменение наклона кривых степени наклепа — t в интервале температур от 700 до 900° С характеризует обычно наблюдаемое снижение деформационного упрочнения в металлах и сплавах, претерпевающих возврат н рекристаллизацию в результате нагрева. При нагреве до более высоких температур дальнейшее падение степени наклепа в поверхностном слое не наблюдается, она остается примерно на уровне 10%. С уменьшением степени поверхностного наклепа интенсивность снижения деформационного упрочнения уменьшается.  [c.158]

Деформационное упрочнение наклеп). Влияние наклепа на усталость изучали многие исследователи. Эти работы, в основном экспериментальные, вели в двух направлениях исследование влияния на усталостную прочность сплошного (равномерного и неравномерного) наклепа, созданного растяжением, сжатием, прокаткой, волочением, изгибом и кручением, и влияния поверхностного наклепа после различных методов механической обработки.  [c.171]

Тельности и температуры испытания положительное влияние поверхностного наклепа снижается и переходит в отрицательное. Так, на малой базе испытаний 10 циклов наклеп повышает сопротивление усталости при 700 и 800° С соответственно на 68,7 и 50% по сравнению с неупрочненным состоянием, а на базе 10 циклов при 700° С обкатка роликами повышает сопротивление усталости лишь на 27,5%, а при 800° С — снижает на 9,7%. Обширные экспериментальные данные о влиянии деформационного упрочнения на сопротивление усталости деталей из жаропрочных и титановых сплавов приведены в работе И. Г. Гринченко [13].  [c.172]

При 500° С предварительный наклеп растяжением до 5—7% остаточной деформации повышает предел длительной прочности на базе 100 ч и почти не изменяет а о наклеп растяжением до б = 2% при 600° С. Заметное снижение длительной прочности при 600° С наблюдается только при остаточной деформации б = 10%. При дальнейшем повышении температуры испытания деформационное упрочнение вызывает снижение сопротивления  [c.196]

Для каждой температуры нагрева существует оптимальная величина предварительной пластической деформации (наклепа), обеспечивающей максимальное сопротивление усталости исследуемого сплава. С повышением температуры эта величина предварительной остаточной деформации уменьшается и при температуре, близкой к температуре начала рекристаллизации, положительный эффект деформационного упрочнения на усталостную прочность исчезает.  [c.199]

Для деталей их жаропрочных сталей и сплавов, работающих при высоких температурах, оптимальным из условий усталостной и длительной прочности будет поверхностный слой с незначительным деформационным упрочнением, соответствующим примерно остаточной деформации, равной б = 1ч-4%, которая для каждого сплава должна устанавливаться в зависимости от рабочей температуры в условиях эксплуатации, или поверхностный слой, металл которого вообще не подвергался пластическому деформированию (без наклепа).  [c.202]

Наклеп деформационный 248 фазовый 36, 248 холодный 239 Нселя точка 19, 42, 72, 74  [c.341]

Повышение температуры старения способствует более интенсивному развитию процессов возврата, увеличению диффузионной подвижности атомов углерода и коагуляции карбидных частиц, облегчая разблокирование дислокаций. В процессе старения стали 10ХСНД при ЗбО С возврат протекает еш е довольно слабо, тогда как при 450 С через 100 ч уровень упругих деформаций по результатам рентгеноструктурного анализа [91] становится близким к его уровню до наклепа. Деформационное охрупчивание стали 10ХСНД в интервале 350-550 С практически не сопровождается (за 1-6 ч старения) развитием межзеренной хрупкости. Охрупчивание полностью обусловлено повышением внут-  [c.146]


ФизикО" механические свойства 1 оверхностного с. юя оценивают глубиной / н, градиентом 0 р и степенью наклепа (деформационного упрочнения), величиной и знаком остаточных напряжений, микроструктурой, плотностью дислокаций, концентрацией вакансий и другими характеристиками. Под  [c.34]

Например, сопротивляемость деталей усталостному разрушению примерно в равной степени зависит от неровностей поверхности и от механических свойств поверхностного слоя. Связь предела выносливости 0-1 с избыточным коэффициентом концентрации ан, уровнем остаточных (технологических) напряжений Оост в поверхностном слое и степенью наклепа (деформационного упрочнения) /г того л е слоя приближенно описывается уравнением регрессии  [c.169]

Р1зложенные здесь модельные представления о влиянии деформации на критическое напряжение хрупкого разрушения S подтверждаются результатами фрактографических и металлографических исследований. Возникновение деформационной субструктуры, обусловленное пластическим деформированием, приводит, как предполагалось, к появлению дополнительных барьеров для микротрещин скола. Тогда фрактуры поверхностей хрупкого разрушения образцов с различной степенью пластической деформации х, предшествующей разрыву, прежде всего должны различаться величиной фасеток скола с ростом х средний размер фасеток должен уменьшаться. Такая закономерность действительно прослеживается как для образцов, испытавших перед разрушением статическую деформацию растяжением, так и для образцов, которые испытывали по программе Циклический наклеп и растяжение .  [c.83]

Кривая 2 на рис. 40, а показывает, что в процессе растяжения металл испытьшает деформационное упрочнение (наклеп).  [c.64]

Повышение усталостной прочности при кратковременных перегрузках объясняется деформационным упрочнением, происходящим, при пластических деформациях микрообъемов материала, сходным с ущючнением, при наклепе. Установлено, что под действием пластических деформаций происходят упрочняющие Процессы разупорядочение кристаллических решеток увеличение плотности дислокаций измельчение кристаллических блоков и увеличение степени их разориентировки зубчатая деформация поверхностей спайности в результате выхода пластических сдвигов на поверхность зерна и, как следствие, увеличение связи между зернами. Уменьшается растворимость С, О п N в а-железе эти элементы выпадают из твердых растворов, образуя высокодисперсные карбиды, QK a№ .iL нитриды в виде Облаков, блокирующих распространение дислокащ1Й.  [c.309]

Вырезку образцов следует проводить, соблюдая определенные меры предосторожности, чтобы не вызвать изменения счруктуры из-за наклепа или нагрева. Наиболее часто для вырезки образцов в металлографических лабораториях используют отрезные станки с абразивными кругами. Для удовлетворительной резки, обеспечивающей отсутствие прижогов и значительного деформационного повреждения поверхности, В.1ЖНО выбрать соответствующий круг и режим резания. Для резки сталей предпочтительнее использовать круги с абразивными частицами из А гОз, а Для резки цветных металлов -круги с частицами Si . Грубозернистые круги обычно более быстро и с меньшим нагревом режут крупные сечения, а мелкозернистые позволяют получить лучшую чистоту поверхности и исключить прижог при резке деталей малого сечения (например, тонкостенных труб). Для резки мягких материалов  [c.310]

Кривую напряжение —деформация (а—г) кристалла целесообразно строить в координатах приведенноз напряжение сдвига т [формула (63)] — приведенная сдвиговая деформация у [формула (67)]. Построение диаграммы в координатах т—7 уменьшает, хотя и не устраняет полностью, различие кривых, полученных для кристаллов, с различной ориентацией плоскостей и направлений скольжения по отношению к внешней нагрузке. Для всех металлов приведенное напряжение сдвига увеличивается с ростом деформаций (рис. 62), в чем и состоит явление деформационного наклепа или упрочнения (см. гл. IV). Однако степень упрочнения г. ц. к. металлических кристаллов намного больше, чем таких г. п. у. металлов, как кадмий, магний и цинк. Металлы с г. п. у. решеткой способны претерпевать очень большие сдвиговые деформации, но только в том случае, если кристаллы ориентированы подходящим образом. Для понимания этого различия в дальнейшем более подробно рассматривается геометрия скольжения г. ц. к. и г. п. у. кристаллов.  [c.115]

Упрочнение увеличением числа дислокаций до.лжно рассматриваться с учетом двух механизмов (Од(л) и сТд(п я))- Рост плотности дислокаций при их беспорядочном переплетении и образовании леса для объемного упрочнения мало эффективен, так как вместе с активным упрочнением устраняется возможность релаксации пиковых напряжений. В этом случае упрочнение, например наклепом, рационально, как правило, в поверхностном слое, при исходной матрице с высокой пластичностью. Деформационное упрочнение сохранит свое определенное значение, но развитие и совершенствование этого механизма, вероятно, целесообразно в сочетании с последующей перестройкой (полигонизационный нагрев) или сегрегационным закреплением (деформационное старение) созданных дислокаций.  [c.10]

При прямом динамическом внедрении абразивных частиц ответственными за разрушение являются прежде всего нормальные напряжения. У вязких пластичных материалов наблюдаются значительно более высокое деформационное упрочнение, локальный рост наклепа, увеличивается неоднородность микроискажений. Частицы износа отделяются лишь после того, как материал будет достаточно охруп-чен и в поверхностном наклепанном слое возникнут микротрещины. Прямое ударное воздействие абразивных частиц на твердые материалы обусловливает возникновение высоких нормальных напряжений,, активное зарождение и развитие микротрещин, интенсивное разрушение. Причем изнашивание с отделением частиц происходит без пластической деформации сразу же после первых ударов абразива т. е. отсутствует предразрушающая фаза наклепа, характерная д.чя пластичных материалов.  [c.117]

Сотрудники Уральского политехнического института выяснили, что в стали 95X18 увеличение количества нестабильного остаточного аустенита (в результате повышения температуры закалки до 1150—1200° С) значительно увеличивает сопротивление стали тепловому износу [9], Повышенная износостойкость стали обусловлена значительной теплостойкостью аустенита, его способностью к интенсивному деформационному упрочнению вследствие наклепа и протеканию у- а-превращения.  [c.30]

На начальном участке всех кривых происходит интенсивное деформационное упрочнение, растет плотность дислокаций и в металле происходит формирование ячеистой субструктуры горячего наклепа. Наиболее сильное деформационное упрочнение характерно для аустенитных сплавов, сплавов меди, никеля, титана, сплавов на основе благородных металлов. Слабым деформацион ным упрочнением характеризуются алюминий и его сплавы, ферритные сплавы, а-железо.  [c.10]

Наклеп или деформационное упрочнение является атермиче-ским процессом, зависящим только от степени пластической деформации, с увеличением которой растет и степень наклепа. Наклеп — индивидуальное свойство каждого металла.  [c.24]


Взаимосвязь между макронапряжениями и степенью наклепа при нагреве. Деформационное упрочнение (наклеп) по глубине поверхностного слоя неоднородно. В первом приближении эта неоднородность характеризуется степенью наклепа, которая непосредственно связана со степенью деформации. Поскольку неоднородность пластической деформации по глубине поверхностного слоя детали, возникшая в результате механической обработки ее, является одной из основных причин образования в детали остаточных макронапряжений, то можно полагать, что между макронапряжениями и степенью наклепа существует взаимосвязь. Для установления этой взаимосвязи параллельно исследовали влияние температуры нагревов на деформационное упрочнение поверхностного слоя и релаксацию остаточных макронапряжений. С этой целью на образцах из жаропрочных сплавов ЭИ617, ЭИ826 и ЭИ929 после фрезерования, шлифования и обкатки роликом замеряли микротвердость по глубине деформированного поверх-150  [c.150]

Термообработка заметно снижает и степень наклепа по сравнению с образцами, не проходившими термообработку. Так, при шлифовании с шероховатостью поверхности у5 снижение степени наклепа в сплавах ЭИ617, ЭИ826 и ЭИ929 составляет соответственно 75, 65 и 50%, а при шлифовании с шероховатостью поверхности у9—V10 степень наклепа снижается в среднем на 50—20%, что указывает на уменьшение деформационного упрочнения поверхностного слоя. Глубина наклепа при данном режиме термообработки остается без изменений, т. е. такой, какой она была после механической обработки. Изменений в шероховатости поверхности после термообработки не обнаружено.  [c.193]

В зависимости от соотношения влияния этих процессов в данных условиях испытания возможно как упрочнение, так и разупрочнение предварительно деформированного металла. При повышении температуры и продолжительности испытания роль и значение процессов разупрочнения возрастает по сравнению со значением деформационного упрочнения, что в случае наклепа приводит к понижению характеристик усталости и жаропрочности сталей и сплавов по сравнению с ненаклепанным состоянием. На характер зависимостей длительной прочности, ползучести и сопротивления усталости от предварительного наклепа влияет субструктура, возникающая в зернах в результате предварительной деформации металла и отжига.  [c.200]


Смотреть страницы где упоминается термин Наклеп деформационный : [c.75]    [c.77]    [c.273]    [c.119]    [c.294]    [c.146]    [c.147]    [c.190]   
Высокомарганцовистые стали и сплавы (1988) -- [ c.248 ]



ПОИСК



Деформационные швы

Наклеп

Наклеп и деформационное старение

Устойчивость деформационного упрочнения и остаточных макронапряжений Релаксация макронапряжений и наклепа при нагреве



© 2025 Mash-xxl.info Реклама на сайте