Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Никелевые сварка

В настоящее время для сварки Си и медно-никелевых сплавов применяется полуавтоматическая и автоматическая сварка в среде N . Режимы сварки приведены в табл. 10. Расход газа не менее 15—20 л/мин.  [c.115]

Сварка дуговая. Соединения сварные трубопроводов из меди и медно-никелевого сплава. Основные типы, конструктивные элементы и размеры.  [c.210]


Хорошо свариваются малоуглеродистые стали (< 0,25% С), низколегированные стали с малым содержанием С и никелевые стали. Сварка высокоуглеродистых, средне- и высоколегированных сталей представляет известные трудности.  [c.159]

Никель — графитовое волокно. Композиционный материал никель — углеродное волокно получали горячим прессованием прядей графитового волокна, уложенных в одном направлении, на которые предварительно наносилось электролитическим методом никелевое покрытие толщиной 1—3 мкм [203, 204]. Для предотвращения взаимодействия волокна с никелевой матрицей на углеродное волокно наносят карбидные покрытия (патент США № 3796587, 1972 г.). В качестве примера применения карбидного покрытия на графитовом волокне может служить покрытие из карбида титана, наносимое на волокно методом его погружения в расплав, состоящий из металла-носителя, не взаимодействующего с волокном, например индия и растворенного в нем титана. Расплав содержал 99,5% индия и 0,5% титана. Для покрытия волокно погружали в такой расплав, нагретый до температуры 850° С, на 4 мин. После отмывки этого волокна в течение 15 мин в 50%-ном растворе соляной кислоты на поверхности графитового волокна оставался слой покрытия карбида титана толщиной 0,5 мкм. Режимы диффузионной сварки углеродного волокна с никелевым покрытием, приведенные в указанных выше работах, примерно одинаковы. Во всех случаях прессование осуществлялось в вакууме 2-10 —1 10 мм рт. ст. при температуре 840—1100° С, давлении 100—175 кгс/см в течение 45—60 мин. Оптимальный режим получения композиционного материала с углеродным волокном без нанесенного предварительного защитного покрытия температура 1050° С, давление 140 кгс/см и время выдержки 60 мин. Полученный по такому режиму материал, содержащий 46—55 об. % волокна Торнел-50, имел предел прочности 55—73 кгс/мм .  [c.143]

Никель — прочие упрочнители. Имеются сведения о получении методом диффузионной сварки под давлением композиционных материалов на основе никеля, упрочненного волокнами окиси алюминия [2151, вольфрама, (патент Франции № 2109 009, 1972 г.), нитевидными кристаллами карбида и нитрида кремния [198], Так получали композиционный материал из никелевой фольги толщиной 0,2 мм и волокна окиси алюминия диаметром  [c.143]

Латунные для. сварки бронзой, общего назначения для стыковых Г-о6-разных и Валиковых швов и для пайки высокопрочных вязких качественных соединений Стержни жёлтого цвета (белые при 1ии никеля) 38-42 2п 0-0,5 Мп 0-1,55п-, 0-1,5 Ре 0-10 N1 0—0,1 51 остальное Си 870— 9с Медных и никелевых сплавов, стали и чугуна Газовая ацетиленокислородной горелкой Не рекомендуются для работы вольтовой дугой. Служат для наплавки поверхностей с высоким сопротивлением износу  [c.442]


Кроме обычных углеродистых сталей, которые подвергаются обезуглероживанию, все исследованные жаростойкие материалы довольно хорощо противостояли воздействию чистого натрия или натрий-калиевого сплава. Таким образом, титан, цирконий, ниобий, тантал, молибден, вольфрам, легированные стали, никель и сплавы на никелевой основе можно уверенно использовать в качестве конструкционных материалов в контакте с натрием при температуре около 800° С. Чистые сварочные швы, выполненные на обычном оборудовании для аргоно-дуговой сварки, стойки в этих условиях так же, как и основной металл. Обработка поверхности оборудования в данном случае повышает его коррозионную стойкость незначительно.  [c.319]

В настоящее время большое значение приобретает сварка жаропрочных сталей и сплавов с конструкционными применительно к турбокомпрессорам дизельных двигателей. Проведены исследования соединений, выполненных сваркой трением, из следующих сочетаний материалов жаропрочная сталь ЭИ 572 со сталью 40Г для турбин, работающих при температуре до 700°, и жаропрочные сплавы иа никелевой основе ЭН 857 и АНВ-300 со сталью 40Х для турбин, работающих при температуре до 900 °С. Разработана технология сварки и термической обработки. Испытания на усталостную прочность и производственные испытания показали, что сварные соединения из указанных материалов имеют высокие прочностные показатели [11].  [c.190]

На заводе Красный котельщик автоматическая дуговая и контактная сварки составляют почти 100% общего объема сварки труб. Широко применяется электрошлаковая сварка барабанов со стенками толщиной 100 мм и более из сталей низкоуглеродистых, хромомолибденовых, никелевых автоматами приваривают штуцеры к барабанам. Ближайшими  [c.112]

Наряду с применением сварки под флюсом, за последние два десятилетия в СССР нашли широкое распространение способы автоматизированной дуговой сварки с защитой инертными газами. Первые работы, проведенные в НИАТе показали, что сварка в защите аргона, гелия, комбинаций этих газов гарантирует получение соединений более высокого качества. Этот способ сварки используют для соединений алюминиевых, медных, магниевых, титановых, никелевых и других сплавов, нержавеющих, аустенитных, жаропрочных, кислотоупорных и других сталей. Обеспечение чистым аргоном (99,7% и выше) в необходимом количестве открыло путь развитию аргоно-дуговой сварки.  [c.117]

Большой опыт накоплен по горячей сварке чугуна при местном нагреве деталей чугунными электродами по слою гранулированной шихты, с использованием графитизаторов. Разрабатываются способы холодной сварки чугуна, преимущественно с применением цветных проволок, а также комбинаций стальных проволок с цветными, в особенности медными (сварка пучком), с использованием электродов из железо-никелевых сплавов ЦЧ-3 и др.  [c.128]

Термомеханическая обработка повышает пластичность и длительную прочность жаропрочных сплавов на никелевой основе. Недостатком ТМО является разупрочнение основного металла и околошовной зоне после сварки.  [c.293]

При сварке чугуна медно-никелевыми электродами получают легкообрабатываемый слой, так как медь и никель не растворяют углерод и не образуют с ним соединений. Величина и характер переходных зон при сварке электродами из цветных металлов существенно отличаются от величины и характера зон, образующихся при сварке стальными электродами. Основное различие состоит в отсутствии диффузии углерода из основного металла в шов.  [c.116]

Для получения трехзвенных вводов предварительно производят сварку молибденового звена с никелевым внутренним звеном, а затем уже приваривают канатик.  [c.322]

ГОСТ 16038—70 Швы сварных соединений трубопроводов из меди и медно-никелевого сплава регламептируе формуй размеры подготовки кромок и выполненных сварных швов при механизированной сварке в защитных газах труб из меди и се сплавов.  [c.12]

При сварке плавящимся электродом в инертных газах используют обычные полуавтоматы для сварки в защитных газах и сварочную проволоку диаметром 1—2 м г сила сварочного тока 150— 200 А для проволоки диаметром 1 мм и 300—450 А для проволоки диаметром 2 мм напряжение дуги 22-26 В скорость сварки зависит от сечения шва. При сварке латуней, бронз и медно-никелевых сплавов наиболее широко используют вольфрамовый электрод, так как при сварке плавяш,имся электродом происходит более интенсивное испарение цинка, олова и др.  [c.347]


Сварка электродами из никелевых сплавов ведется корот-кн п1 валиками (30—50 мм) с проковкой их в горячем состоянии с целью устранения напряжений от усадки при остываиии металла шва. Наличие в сварочной ванне эле-ментов-графитизаторов (монель-металл содержит Ni 60— 70% и Си 25—30%) уменьшает отбеливание околошовной зоны. Сварку необходимо производить при небольшой силе тока обратной полярности валиками малых сечений.  [c.96]

Для сварки медно-никелевого сплава МНЖ5-1 между собой, с латунью марки Л90 и бронзой марки Бр.АМц 9-2  [c.174]

Сварке этим способом поддаются тугоплавкие, жаропрочные сплавы, металлокерамика, керамика. Для сварки тонких деталей из медных, алюминиевых и никелевых сплавов, а твкже коррозионно-стойких сталей применяют токи радиочастотного диапазона (50—200 кГц)  [c.165]

В последующих экспериментах по применению пропитки никелевыми сплавами были использованы волокна сапфира большого диаметра (0,5 мм) с различными покрытиями (Ноуан и др. [39]). Зти опыты оказались неудачными, так как даже толстые вольфрамовые покрытия не защищали волокна от повреждения (разд. IV, А). Последующие программы разработки композитов, связанные с использованием гальванического осаждения и диффузионной сварки, будут обсуждаться в разд. III.  [c.327]

При сварке никелевой стали с присадкой сплава In onel это требование легко выполнимо, но в случае присадки  [c.207]

МЦ-5 ЭВ 0.4-0,6 r 0,2-0.35 Zr 0,5-0,8 r 0,4—0,6 Zn МЦ-4, МЦ-5 для электродов точечной и роликовой сварки стали, никелевых сплавов, алюминия и ыагииевых сплавов (МЦ-5А с 0.15-0.25% Сг)  [c.239]

При определенном содержании ниобия в никелевых сплавах образуется химическое соединение NijNb, для которого харак-т но замедленное (по сравнению с фазой Nig (Ti, Al)) выделение из твердого никелевого раствора, что в некотором случае (например, при сварке) представляет очевидное преимущество.  [c.163]

Главные циркуляционные насосы Нововоронежской АЭС (НВАЭС). По массогабаритным характеристикам эти насосы (рис. 5.3) можно отнести к наиболее крупным насосам этого типа. ГЦН состоит из прочно-нлотного корпуса 7 с двухзаходной спиральной улиткой 5 и выемной части 2. Корпус на сварке крепится к напорному 4 и всасывающему 8 патрубкам. Выемная часть уплотнена в корпусе самоуплотняющейся клиновой никелевой прокладкой 3.  [c.136]

Медный, мюниметалл Стержни 38—42 Zo остальное Си 885 Медных и никелевых сплавов, стали и чугуна (соединения среднего качества и умеренной прочности) Газовая и в печах Не рекомендуется для. сварки бронзой стыковых У-образных и Валиковых швов  [c.442]

Электродуговая сварка чугуна и бронзы применяется в основном для исправления дефектов литья. Для сварки серого чугуна с предварительным нагревом до температуры 400—500° С применяются электроды ОЛ Ч-1, обеспечивающие хорошую механическую обрабатываемость наплавленного металла. Стержни электродов ОМЧ-1 изготовляются из чугуна по ГОСТ 2671-44 (прутки чугунные сварочные). Электроды из монель-металла и медножелезные позволяют сваривать серый чугун без предварительного подогрева и дают обрабатываемый шов, прочность которого составляет 50—60% прочности основного металла. Небольшие дефекты отливок из высокопрочного чугуна могут заплавляться железо-никелевыми электродами ЦЧ-3, обеспечивающими 50—75% прочности основного металла. При сварке отливки должны быть подогреты до температуры 300—350° С.  [c.183]

Одной из основных причин снижения эксплуатационной надежности разнородных сварных соединений является хрупкое разрушение в зоне сплавления. Для предупреждения этого явления рекомендуется применять сварочные материалы с повышенным запасом аустенитности, лучше всего электроды на никелевой основе. Образование и развитие в зоне сплавления переходных прослоек, появляюш,ихся в результате диффузии углерода из малолегированного основного металла в аустенитный шов при сварке, термообработке и эксплуатации конструкции в условиях высоких температур, также может способствовать снижению прочности разнородных соединений. Переходные прослойки в виде обезуглероженной зоны крупных зерен феррита со стороны малолегированного металла и высокотвердой прослойки со стороны аустенитного шва образуются, начиная с температуры 420— 450° С и наибольшей толщины достигают во время выдержки при температуре 800—850° С.  [c.151]

При ручной дуговой сварке переходные прослойки не образуются из-за кратковременного воздействия высокой температуры. В противоположность этому в сварных соединениях, выполненных электрошлаковой или автоматической сваркой под слоем флюса, получают большое развитие диффузионные процессы. Для предупреждения диффузии углерода рекомендуется сваривать разнородные соединения электродами с повышенным содержанием никеля (например, сталь типа Х16Н26М6) или никелевыми электродами.  [c.151]

При сварке аустенитных сталей с перлитными применяют электроды с большим запасом аустенитности или электроды из сплавов на никелевой основе. Иногда используют промежуточную вставку из сплава на никелевой основе. Последнее решение конструкции композитного соединения широко распространено в США.  [c.186]

Для сплавов на никелевой основе коррозия может быть катастрофической. При высокой температуре их надо плакировать жаропрочным покрытием или не применять вовсе. Электроды для сварки труб из разных сталей тоже не должны содержать никеля. Сплавы аустенитного класса более устойчивы. Стрингер [3] рекомендует изготавливать опоры из сплавов 25Х25Н20, 10Х18Н10 и НК40.  [c.84]

Переходной элемент типа Маннесман представляет собой составной патрубок из отрезков труб перлитной и аустенитной сталей, соединенных между собой, как показано на фиг. 116, в, причем перлитная составляющая находится снаружи. Площадь контакта в данном случае в 6—10 раз больше, чем при обычно используемых формах разделок. Соединение осуществляется методом прессовой сварки, чем предотвращается расплавление свариваемых материалов. При необходимости между свариваемыми поверхностями прокладывается никелевая фольга, наличие которой полностью устраняет возможную диффузию углерода из перлитной стали в аустенитную. Переходные элементы типа Маннесман выпускаются в ФРГ размерами от 23,7 X 4,7 мм до 200 X 33 мм.  [c.171]


Сварка используется для соединения элементов конструкций, имеющих самую различную толщину. При сварке тонких сечений материала мало, и если он имеет склонность к возникновению остаточных напряжений, то наблюдающиеся дефекты являются в основном дефектами сварки при сварке толстых сечений наиболее серьезными дефектами являются трещины которые непосредственно вызываются напряжением, возникающим при объемных изменениях, в частности, в зоне термического влияния. В предельном случае сварки за один проход соединение можно получить без использования присадочного металла. В последнее время максимальное сечение, которое могло быть сварено газовой сваркой, было значительно увеличено в результате разработки и внедрения электронно-лучевой сварки, которая позволяет получить локальную зону проплавления глубиной порядка нескольких сантиметров. При соответствующем материале и отсутствии газовыделения электронно-лучевая сварка является прогрессивным процессом, однако для ее осуществления необходимо либо иметь сварочную камеру, которую можно было бы вакууми-ровать, либо обеспечить вакуум в точке сварки. Хотя, в принципе желательно, чтобы сварное соединение обладало такими же свойствами, как основной металл, на практике это не всегда возможно, и поэтому во многих случаях используют сварку с присадочным металлом, который менее склонен к образованию трещин. Примерами применяемых при сварке присадочных металлов, которые отличаются по составу от основного металла, являются сталь с 2,25% Сг и 1% Мо для сварки 0,5% Сг, Мо, V сталей сталь с контролируемым содержанпем феррита для сварки аусте-нитных сталей и специальные электроды типа In o А для никелевых сплавов. Много попыток было сделано, чтобы разработать электроды для 0,5% Сг, Мо, V сталей, однако наплавленный металл этого состава имел очень низкую пластичность и, кроме того, приобретал высокое сопротивление деформации при выпадении карбида ванадия, повышающего склонность к образованию  [c.72]

Стыковое сварное соединение цилиндра с цилиндром наиболее важно для труб парогенератора. Возникающие при этом дефекты представляют серьезную проблему из-за большого числа сварных швов в парогенераторе. Основными из них являются непровар, пористость и воздушные пузыри (рис. 7.5) [6]. Большинство обычно используемых материалов не подвержено трещинообразо-ванию, однако трещины могут возникнуть при сварке мартенсит-ных и стареющих аустенитных сталей. Некоторые стали, относительно редко применяемые в парогенераторах, особенно чувствительны к трещинам. В частности, образование трещин в зоне термического влияния очень трудно предотвратить в мартенсит-ной стали с 12% Сг, потому что объемные изменения связаны с мартенситным переходом. Никелевые стали также склонны к трещинообразованию как в сварном шве, так и в зоне термического влияния. Трещинобразование в сталях с 12% Сг можно предотвратить, используя их предварительный нагрев, а в никелевых сплавах — используя специальный присадочный металл, например проволоку 1псо А , и в обоих случаях можно свести к минимуму при ограничении тепловой мощности дуги и использовании высококачественных проволочных электродов или при применении пульсирующей дуги. Очень серьезная проблема при сварке труб парогенератора связана с наплавом, получающимся на внутренней стороне трубок. Обычно его пытаются удалить при протяжке, но этот способ не очень эффективен, особенно когда сварной шов находится в центральной части длинной трубы. Первоначально многие сварные узлы такого рода получали контактной стыковой сваркой, причем в критический момент в трубу под давлением подавали инертный газ, чтобы предотвратить натек металла внутрь. К сожалению, уловить четкую грань между образованием наплава и полным требуемым проплавлением в этом случае очень трудно, так как даже случайные колебания элект-  [c.75]

Одним из самых важных компонентов является молибден, который весьма благоприятно влияет на теплоустойчивость стали, а также на еклонность к тепловой и отпускной хрупкости. Содержание молибдена в перлитных сталях редко превышает 1,5% и лишь в аустенитных сталях и сплавах на никелевой и других основах может достигать значительно большей величины. Молибден благоприятно влияет на зернистость стали сужает зону возможней закалки при сварке при правильно выбранной предшествующей термообработке повышает температуру рекристаллизации и тем самым сопротивление ползучести. Молибденовая сталь обладает наиболее высокими свойствами, когда перлит, являющийся одной из структурных составляющих [11, 27, 28, 64, 95, 105], имеет пластинчатый характер.  [c.6]

При сварке чугуна широко применяют латунные, медно-железные (ОЗЧ-2), медно-никелевые (МНЧ-2), никелево-железные (ЦЧ-ЗА) и никелевые (ПАНЧ-11) сплавы.  [c.116]

При сварке чугуна самозащитной проволокой ПАНЧ-11 ТУ 46-21-593—77 (на никелевой основе) диаметром 1—1,2 мм применяют шланговые полуавтоматы  [c.118]

Кн (операции 3) и aBtOMarHqe Kn отрезаются ножаМи (операции 5). Одновременно с никелевой проволокой по дается платинитовая проволока (операция 1), которая после зажима в клещах (операция 2) отрезается на заданную длину (операция 4) и переносится клещами, устанавливающими звено платинита между концами отрезков никеля и меди (операция 5). После того кш все три эвена установлены на линии сварки, под действием пружин никель и медь, подаются к платиниту (операция 6). Вслед за этим пламя двух горелок налравляется на стыки (операция 7). Стыки оплавляются, и под действием пружин Происходит соединение свариваемых элементов. После отвода горелок в исходную позицию пружины еще некоторое В ремя продолжают осадку для получения плотного шва (опе рация 8). Осадка оканчивается в момент освобождения готового ввода, который затем по желобу соскальзывает к механизму развальцовки, где производятся расплющивание конца никеля и образование лопатки ввода.  [c.318]

Вращением вала электродвигателя производится скручивание этих жилок в канатик длиной 2—3 м, и затем он разрезается на отрезки требуемой длины. Один из концов канатика для хорошей сварки с молибденовым звеном армируется никелевой втулкой, которая обжимается на ротационной ковочной машине с целью более плотного облегания.  [c.322]


Смотреть страницы где упоминается термин Никелевые сварка : [c.114]    [c.331]    [c.338]    [c.160]    [c.113]    [c.337]    [c.228]    [c.380]    [c.81]    [c.78]    [c.210]    [c.290]    [c.102]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.148 ]



ПОИСК



Особенности сварочных свойств сплавов на никелевой основе — Способы сварки и сварочные материалы

Сварка алюминиевых сплавов никелевых сплавов

Сварка жаропрочных сплавов на никелевой основе

Сварка жаропрочных сталей и сплавов на никелевой основе

Сварка медно-никелевых сплавов

Сварка никелевых сплавов (Б.Ф. Якушин)

Сварка никеля и никелевых сплавов (д-р техн. наук А. И. Акулов, инж И. А. Сокол)

Сварка никеля и сплавов на никелевой основе

Сварка через пористые никелевые ленты

Ч никелевый



© 2025 Mash-xxl.info Реклама на сайте