Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вращение стационарное

Стенд состоит из рамы 5, подъемной рамы 10, механизмов вращения стационарных 3 и подъемных 4 роликов и механизма подъема рамы.  [c.201]

Измерительными приборами при проведении испытаний но ГОСТ 17.2.2.03—77 являются газоанализатор, основанный на любом принципе определения концентраций окиси углерода, и тахометр. Измерительный прибор должен и.меть шкалу, отградуированную в процентах объемных долей СО от 0 до 5 или от 0 до 12, погрешность измерений переносного газоанализатора не должна превышать 1,5% от верхнего предела по шкале, стационарного — не более 2.5%. Постоянная времени прибора не должна быть более 20 с. Погрешность определения частоты вращения вала двигателя — не более 2,5%.  [c.31]


Пример 5.3.4. Рассмотрим ротор турбины (рис. 5.3.4). При равномерном вращении поток вещества через межлопаточные пространства будет стационарным. Изменение кинетического момента будет отсутствовать, что приведет к выполнению равенства  [c.413]

При стационарном течении сквозь турбину векторы относительной скорости поступающего и убывающего вещества, проходящего через межлопаточные пространства системы, имеют постоянные, но различные величину, направление и начало. За счет этого возникает дополнительный момент. обеспечивающий требуемый режим вращения турбины.  [c.414]

Обозначим через энергию, обусловленную вращением ядер (ротационная энергия), через ХРт, — энергию, соответствующую колебаниям ядер (вибрационная энергия), и через We — энергию, обусловленную электронной конфигурацией (электронная энергия). Энергия взаимодействия отдельных типов молекулярных движений обычно бывает мала даже по сравнению с Поэтому мы можем ею пренебречь и с достаточным приближением выразить полную энергию какого-либо стационарного состояния молекулы в виде  [c.746]

Соотношение между различными частями полосатого спектра можно представить и несколько иначе. Вообразим, что в нашей молекуле могут изменяться только электронные состояния, а вращения и колебания отсутствуют, т. е. что энергия стационарных состояний молекулы определяется только величиной Х е- Спектр такой молекулы состоял бы, подобно спектру атомов, из линий, соответствующих электронным переходам с частотой V = (1 —и расположенных по всему спектру примерно на местах, где наблюдаются в действительности системы полос. Эти линии и намечают распределение всей серии по спектру.  [c.747]

Физический маятник ( 117) представляет собой твердое тело, подчиненное голономным связям, выражающим условия вращения тела вокруг неподвижной оси. Уравнения голономных стационарных связей в этом случае можно представить в виде следующих условий, налагаемых на обобщенные М х ц) координаты твердого тела  [c.303]

Отсюда следует, что стационарное вращение тола может происходить только вокруг главной оси инерции тела для точки О, причем величина угловой скорости тела мо кет быть произвольной.  [c.158]

Если движение тела не является стационарным вращением или асимптотическим движением, то, согласно п. 102, величины р, q, г представляют собой периодические функции времени. Когда значение t увеличивается на период, то синусы и косинусы углов 0 и Ф принимают свои первоначальные значения. Значения же sin ij) и os г з через период, вообще говоря, изменяются, так как за период угол ij) увеличивается на некоторую постоянную величину. Это следует из (21). Действительно, пусть — период по времени  [c.169]


Малые колебания стержня относительно стационарного вращения. Получим уравнения малых колебаний стержня, вращающегося с постоянной угловой скоростью соо относительно осевой линии. Так как угловая скорость вращения шо входит только в уравнение (2.12) вращения элемента стержня, то после преобразований по-  [c.71]

Уравнения малых колебаний прямолинейного стержня, имеющего продольное движение. Общие нелинейные уравнения движения пространственно-криволинейного стержня (см. рис. 2.4), имеющего принудительную угловую скорость вращения 0)0 и принудительную скорость продольного движения ууо, были получены в 2.1. Уравнения, характеризующие стационарный режим движения, когда форма осевой линии стержня остается в пространстве неизменной, получены в 2.4. Уравнения малых колебаний стержня относит,ельно стационарного движения были получены в 3.4. Уравнения, полученные в 3.4, описывают малые колебания стержня относительно стационарного движения, когда осевая линия стержня есть пространственная кривая. Можно уравнения малых колебаний стержня относительно прямолинейного движения, например ветвь передачи с гибкой связью (см. рис. В.5), получить из этих общих уравнений. Но для выяснения основных особенностей подобных задач целесообразно для частного случая колебаний прямолинейного стержня еще раз повторить вывод уравнений малых колебаний относительно прямолинейного стационарного движения стержня.  [c.191]

Соотношение (3.1.11) известно как правило частот Бора. Оно представляет собой сердцевину теории Бора. Во-первых, из него следует, что частота испускаемого атомом излучения не зависит от частоты вращения электрона по той или иной орбите, а определяется разностью энергий соответствующих уровней надо поделить эту разность энергий на постоянную Планка. Сточки зрения классической теории это обстоятельство является не менее революционным, чем постулирование стационарных орбит или квантование момента импульса и энергии. Любопытно, что, когда Эйнштейн ознакомился с работой Бора, он воскликнул Но в таком  [c.65]

Первые семь членов в (1.1.5) определяют статические, а остальные — динамические составляющие аэродинамических коэффициентов. Статические составляющие соответствуют стационарным условиям обтекания аппарата, при которых его скорость постоянная, углы атаки и скольжения, а также углы отклонения рулей фиксированы. Динамические составляющие возникают при нестационарном (неуста-новившемся) движении, сопровождающемся ускорением или замедлением обтекающего потока, вращением аппарата и изменением по времени углов поворота рулей.  [c.16]

При стационарном потенциальном вращении жидкости, а также при поступательно-вращательном ее течении по трубе на свободной поверхности жидкости могут под действием центробежных сил возникать и распространяться так называемые центробежные волны. Если длина этих волн велика по сравнению с радиусом трубы, их называют длинными центробежными волнами.  [c.324]

Зубчатые муфты получили широкое распространение в транспортных и стационарных машинах благодаря следующим достоинствам высокая нагрузочная способность при малых габаритах, обусловленные передачей нагрузки большим числом одновременно работающих пар зубьев технологичность изготовления и возможность использования в широких диапазонах частот вращения и передаваемых моментов. Муфты подбирают по ГОСТ 5006—83 в диапазоне диаметров валов [c.340]

На двигателях большой мощности (тепловозных, судовых или стационарных) устанавливаются регуляторы непрямого действия (рис. 5.23). В их конструкцию входит чувствительный элемент частоты вращения, состоящий из грузов 1, пружины 2 и муфты 3, и усилительный элемент с поршнями 17 и 19, гидроцилиндра, управляемыми гидрораспределителем 6, выполненным как одно целое с муфтой 3.  [c.252]


Дефектоскоп ВД-40Н состоит из сканирующего механизма с ВТП и стационарной электронной стойки (рис. 74). При осевом перемещении объекта контроля преобразователя описывают винтовую линию вокруг его поверхности. Скорость перемещения объекта определяется скоростью вращения ВТП, их числом и шириной зоны контроля каждого из них. В приборе используются два ВТП и два измерительных канала соответственно. Структурная схема каждого из каналов отличается от схемы каналов дефектоскопа ВД-ЗОП тем, что здесь способ проекции используется для уменьшения влияния зазора. Кроме того, имеется дополнительный канал измерения расстояния между преобразователем и поверхностью детали. Сигнал, полученный от одной из измерительных обмоток и несущий информацию, в основном о величине зазора, обрабатывается в этом канале и служит для управления коэффициентом передачи основного измерительного канала. Таким образом, сохраняется неизменной чувствительность дефектоскопа при изменениях зазора, что позволяет вы-  [c.144]

Стационарная установка Циклон , предназначенная для контроля кольцевых и продольных швов цилиндрических корпусов сосудов (диаметром 2,0. .. 5,5 м), смонтирована на платформе, передвигающейся по рельсовому пути. Кольцевые швы контролируют при вращении сосуда на роликоопорах, продольные швы — при движении установки по рельсам. Изделие контролируют дважды с одной и другой стороны от продольной оси шва. Акустический блок включает в себя два преобразователя на частоту 1,8 МГц, реализующих симметричный вариант зеркального эхо-метода (ЗЭМ) благодаря непрерывному движению по винтам, приводимым от электродвигателя, и два совмещенных ПЭП на частоту 1,8 МГц с углами ввода 40 и 50° для повышения надежности обнаружения объемных дефектов.  [c.386]

Если неравенство (16) имеет место, то, хотя в рассматриваемом случае центр тяжести расположен над геометрическим центром шара, вращение вокруг вертикальной оси будет устойчивым стационарным движением.  [c.294]

В работе [31] изложены результаты теоретического и экспериментального исследования по изучению термопрочности дисков стационарных турбин. Испытывали диск в разгонной установке, как это следует из рис. 4, при достаточно жестких условиях теплового нагружения. Нагрев диска начинали при достижении предельной частоты вращения (п=12 700 об/мин), которую выдерживали постоянной в течение 60 мин температура на ободе диска составляла 750°С, в то же время градиент температур по радиусу в начальный период достигал 650° С. После 13 циклов испытаний в диске была обнаружена магистральная трещина, идущая от дна лопаточного паза в полотно диска. Причиной столь быстрого разрушения диска, как показал расчет, явились циклические упругопластические деформации раз-  [c.9]

Пример S. Определить момент, который может передать закрытая прямозубая коническая передача (см. рис. 9.8, с) с межосевым углом 6j90° из расчета зубьев на контактную прочность и изгиб, если модуль =5 мм, число зубьев колес 2, =20, 22=40, частота вращения шестерни n = 540 об/мин, материал шестерни — сталь 50 Г нормализованная сгд = 688 Н/мм , НВ 210. . . 230. Материал колеса — сталь 45 нормализованная 0 = 549 Н/мм , НВ 180. . . 210. Передача нереверсивная. Режим работы передачи стационарный (нагрузка постоянная). Срок службы Lf = 10 000 ч.  [c.211]

Определить, какую номинальную мощность может передать крестовая муфта с текстолитовым сухарем, установленная на валу стационарного ленточного транспортера с частотой вращения и = 860 об/мин. Наибольшее рабочее напряжение смятия на рабочей поверхности сухаря Стсм = 8,5 Н/мм , ширина сухаря й = 130 мм, толщина сухаря /i = 50 мм, коэффициент режима работы /(=1,5.  [c.410]

В выражение (8.1) за определяющий размер в (8.1) принят радиус R расположения оси вращения вихревой трубы от оси ротора. Поток в камере энергоразделения при этом считался несжимаемым и изотермическим. Характеристики вихревого энергоразделителя d = 15 мм, f=Q,, Т = 0,5, ц = 0,6, 71 = 4. В стационарных условиях при Re rf= (f j p = 6 10 абсолютные эф< кты охлаждения и нагрева составляли М= ЗОК, Д7].= 37 К. Штриховая линия на рис. 8.11 показывает дополнительный подогрев газа при воздействии вторичного инерциального поля на радиусе вращения ротора где размещен дроссель вихревой трубы  [c.380]

Использование принципа Ферма иногда облегчает решение оптических задач. Так, очевидны условия фокусировки света при его отражении от эллиптического зеркала. И.зображение светящейся точки, помещенной в одном из фокусов эллипсоида вращения Р, получается в фокусе Q, так как суммарная длина РО + OQ (рис. 6.19) постоянна для любого положения точки О на поверхности эллипсоида. Так же легко понять фокусирующее действие линзы, у которой суммарная оптическая длина пути в стекле и воздухе оказывается стационарной (рис. 6.20).  [c.277]

Оказывается, что решению, приводящему к наименьшему значению Rkp, отвечает чисто мнимая функция (/г). Поэтому при /г = ккр не только Imoo = О, но и вообще со = 0. Это значит, что первая потеря устойчивости стационарным вращением жидкости приводит к возникновению другого, тоже стационарного течения ). Оно представляет собой тороидальные вихри (их называют тэйлоровскими), регулярно расположенные вдоль длины цилиндров. Для случая вращения обоих цилиндров в одну сторону, на рис. 14 схематически изображены проекции линий тока этих вихрей на плоскость меридионального сечения цилиндров  [c.145]

Стационарные вращения твердого тела в случае Эйлера. Будем называть стационарным вращением такое движение твердого тела, нри котором его угловая скорость (о постоянна относительно тела (а следовательно, и относительно неиодвил ной системы отсчета см. п. 30). Для стациопарного вращения величины р, q, г постоянны. Для их оиределения из системы (6) получим такие уравнения  [c.158]


Примеры. 1. Устойчивость стацио>1арпых вращений твердого тела в случае Эйлера. Как показапо в п. 99, при стационарных вращениях твердого тила  [c.371]

Рассмотрим частный случай стационарного двилсения — плоское движение стержня. В начале данного параграфа был приведен пример ленточного радиатора (см. рис. 2.10). Уравнения стационарного движения ленты получим в системе координат Х Ох2, вращающейся с угловой скоростью шоо вращения цилиндров (см. рис. 2.10), прижимающих ленту к барабану. В относительной системе координат лента имеет продольное движение  [c.48]

Уравнения стационарного движения стержня, имеющего вращение относительно осевой линии (см. рис. 2.3). В данном случае точка В на рис. 2.3 неподвижна. Из уравнения (2.44) при 1ц= = сопз(, у1 =аУо=сопз( получаем  [c.51]

Длинные центробежные волны. При стационарном потенциальном вращении жидкости, а также при поступательно-вращательном течении жидкость по трубе на свободной поверхности жидкости (которая, как было показано в предыдущем параграфе, предетавляет еобой цилиндрическую поверхность радиуса Гд, т. е. поверхность расположенного на оси газового вихря) могут под действием центробежных сил возникать и распространяться так называемые центробежные волны если длина этих волн велика по сравнению с радиусом трубы, их называют длинными центробежными волнами  [c.299]

Уравнение (10.22) линейное относительно искомой функции ср и составляет теоретическую основу аэродинамики стационарных слабовозмущенных (линеаризованных) течений около тонких тел вращения. Для него найдены общие решения, позволяющие рассчитать скорости и давления около тонких тел вращения (в том числе движущихся под малым углом атаки).  [c.499]

Свойство (3.4) не может быть обусловлено влиянием вязкости жидкости, поскольку при стационарном вращении вязкой капли, заключенной в твердую несферичную оболочку, момент инерции будет иметь твердотельное значение. Для описания свойства (3.4) в рамках коллективной модели приходится считать, что вещество ядра представляет собой смесь сверхтекучей жидкости с вязкой. Поэтому свойство (3.4) называется частичной сверхтекучестью ядерной материи.  [c.90]

Постройка агрегатов большой мощности ограничивается числом оборотов коленчатого вала двигателя, так как рост числа оборотов вала поршневого двигателя увеличивает силы инерции движущихся деталей (поршни, шатуны и пр.). Это приводит к утяжелению конструкции в связи с необходимостью увеличения прочности и массы частей двигателя. Поэтому скорость вращения вала крупных стационарных двигателей находится в пределах 300—600 об мин, для быстроходных (карбюраторных) двигателей она составляет 3500—6000 об1мин, а для транспортных дизелей 1500—3000 об мин.  [c.445]


Смотреть страницы где упоминается термин Вращение стационарное : [c.30]    [c.179]    [c.252]    [c.449]    [c.202]    [c.95]    [c.414]    [c.300]    [c.277]    [c.165]    [c.167]    [c.57]    [c.8]    [c.2]    [c.155]    [c.196]    [c.171]    [c.391]   
Теоретическая механика (1990) -- [ c.159 ]

Теоретическая механика (1999) -- [ c.190 ]

Математические методы классической механики (0) -- [ c.129 , c.293 ]



ПОИСК



Анализ основных уравнений. Вибрационные моменты, парциальные угловые скорости вибрационная связь между роторами . 6.2.4. Стационарные режимы синхронного вращения и их устойчивость Интегральный признак устойчивости (экстремальное свойство) синхронных движений

Вращение вокруг стационарного состояния. Циклические процессы

Геометрическая интерпретация Пуансо движения твердого тела с одной неподвижной точкой по инерции Устойчивость стационарных вращений Регулярная прецессия

Куракин, В. И. Юдович. Устойчивость стационарного вращения правильного вихревого многоугольника

Стационарное вращение системы точечных вихрей

Стационарные вращения твердого тела в случае Эйлера

Стационарные режимы вращении ротора н их устойчивость

Устойчивость стационарных вращений

Эриксена — Тупина — Хилл стационарной оси вращени



© 2025 Mash-xxl.info Реклама на сайте