Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Способ флюсовый

Разработан также способ флюсовой сварки фторопласта, позволяющий получать прочность сварного шва, почти равную первоначальной прочности материала. --  [c.159]

Кислородно-флюсовая резка. Для резки хромистых, хромоникелевых нержавеющих сталей, чугуна и цветных металлов, которые не удовлетворяют условиям кислородной резки, применяют способ кислородно-с юсовой резки, сущность которого заключается в том, что в зону реза вместе с режущим кислородом вводится специальный порошкообразный флюс, при сгорании которого выделяется дополнительное тепло и повышается температура в зоне реза. Кроме того, продукты сгорания флюса, взаимодействуя с тугоплавкими окислами, образуют жидкотекучие шлаки, которые легко удаляются из зоны реза, не препятствуя нормальному протеканию процесса.  [c.104]


Большие успехи в послевоенный период получены в технике газо-пла-менной обработки металлов, в области создания способов и аппаратуры для газовой разделительной резки (например, ВНИИАвтогеном— А. Н. Шаш-ков, О. Ш. Спектор и др. МВТУ им. Баумана — Г. Б. Евсеев). В 1950 г. был создан высокоэффективный отечественный способ кислородно-флюсовой резки высокохромистых и хромоникелевых сталей, чугуна и цветных металлов, удостоенный Государственной премии. ВНИИАвтогеном создан ряд специализированных установок для поверхностной газовой резки и для металлизации.  [c.130]

Обозначения способов автоматической н полуавтоматической сварки по ГОСТ 8713-58 А — автоматическая сварка под флюсом без применения подкладок, подушек и ручной сварки Аф — то же, на флюсовой подушке Ар — то же, с односторонней ручной сваркой. П — полуавтоматическая сварка под флюсом без применения подкладок, подушек и ручной подварки Пр — с ручной односторонней сваркой.  [c.410]

Широкое применение при сварке встык прямолинейных и круговых швов получили флюсовые подушки (фиг. 27), так как при этом способе сварки требуется меньшая точность сборки и получается  [c.423]

Объем производства сварных конструкций долл<ен возрасти к 1970 г. до 22 млн. т. Предусмотрено проектирование строительства и расширение в 1966—1970 гг. специализированных межотраслевых и отраслевых заводов по производству сварных конструкций увеличение объема применения прогрессивных механизированных способов сварки по сравнению с 1965 г. в среде защитных газов в 1,5 раза, порошковой и легированной проволокой в 2 раза, электрошлаковой в 1,5 раза, с флюсовой защитой в 1,5 раза, новых физических методов сварки в 2 раза. Повышается уровень механизации сварочных работ в промышленности до 60%1 в строительстве до 32%. Должны быть созданы и введены в действие механизированные и автоматизированные линии и участки по производству сварных машиностроительных и строительных конструкций.  [c.110]

Недостатком флюсовой пайки меди является трудность получения при этом способе герметичных соединений. Кроме Т01 о, остатки флюса являются  [c.250]

Реактивно-флюсовую пайку можно вести без припоя и с припоем. К некапиллярным способам относятся пайка-сварка и сварка-пайка. При пайке-сварке соединения образуются так же, как и при сварке плавлением, но в качестве присадочного металла применяют припой (рис. 5.53). При сварке-пайке соединяют разнородные материалы с применением местного нагрева. Более легкоплавкий материал при достижении температуры плавления выполняет роль припоя.  [c.282]


Стыковое соединение без скоса кромок на флюсовой подушке (однопроходный способ сварки)  [c.314]

Для проведения кислородно-флюсовой резки разработаны различные установки, отличающиеся способом подачи порошка в раз (рис. 10.13). Железный порошок подается струей кислорода, воздуха или азота из бачка флюсопитателя к серийному резаку для кислородной резки, снабженному специальной оснасткой для подачи порошка в рез. Частички порошка сгорают в струе режущего кислорода с выделением определенного количества теплоты и поступают в рез. По этой схеме работают наиболее широко распространенные в промышленности установки УРХС-5 и УФР-5.  [c.356]

Многие легированные стали плохо поддаются обычной кислородной резке. Например, все стали со значительным содержанием хрома (при резке образуется тугоплавкий окисел хрома), чугун, цветные металлы. Однако они поддаются кислородно-флюсовой резке. При этом способе в зону резки режущим кислородом вдувается порошкообразный флюс. Он состоит, главным образом, из порошка металлического железа. Сгорая в струе кислорода, порошок дает дополнительное количество тепла, а образующиеся оксиды, смешиваясь с оксидами разрезаемого металла, разжижают их. В зависимости от состава разрезаемого металла во флюс могут добавляться и другие добавки, например, кварцевый песок, порошок алюминия и др.  [c.92]

При проектировании изделий, изготовляемых контактно-реактивным, реактивно-флюсовым, диффузионным или композиционным способами пайки, необходимо предусмотреть возможность осуществления незначительного сдавливания соединяемых деталей.  [c.273]

Кислородно-флюсовая резка. Отличается от кислородной тем, что в зону раздела вместе с кислородом вводится флюс (железный порошок), который, сгорая, повышает температуру в зоне разрезки. Образующиеся шлаки разжижаются и легко удаляются кислородной струей. Способ применяется для разрезки заготовок из высоколегированных, хромистых, хромоникелевых сталей, сталей, содержащих вольфрам, медных и алюминиевых сплавов.  [c.210]

Величина зазора в рекомендуемых пределах зависит и от способа удаления окисла при пайке. При флюсовой пайке капиллярный зазор следует выбирать несколько большим, чем при бес-флюсовых способах пайки, для облегчения удаления его остатков из зазора. При флюсовой пайке вручную зазоры обычно не выше 0,5 мм и не менее 0,05 мм. Паяные соединения с зазорами менее 0,05 мм могут быть получены только с применением защитных газовых сред или вакуума. При плохой смачиваемости паяемого металла жидким припоем зазоры следует увеличить.  [c.48]

При оценке полученных сочетаний исходили, в частности, из следующих соображений. Среди комбинированных способов внутри группы по формированию паяного шва малоперспективным можно считать способ флюсовой контактной твердогазовой пайки, так как присутствие флюса препятствует этому процессу.  [c.158]

Сравнение примененных способов флюсовой обработки чугуна позволило установить, что оптимальным является способ его подачи на дно раздаточного ковша перед заливкой чугуна, так как при введении флюса на дно мефно— го ковша возникала необходимость удаления шлака. Эта операдия приводила к удлинению технологического цикла.  [c.7]

Таким образом, из опробованных способов флюсовой обработки может быть рекомендовано введение флюса в количестве 1,0% (по массе) на дно раздаточного ковша перед его заполнением ваграночным чугуном. Для установления возможности полной разливки чугуна из раздаточного ковша чугун обрабатывали оптимальным количеством фпюса (1%) и выдерживали в ковше в течение 10 мин,После частичного удаления шлака с поверхности металла чу -Гун разливали, фиксируя количество отлитых труб, время запивки каждой трубы в отдельности и полное время раз -ливки металла.  [c.8]

Формирование корня шва па флюсовой подушке позволяет выполнять автоматическую сварку однопроходных швов без разделки или с V-образной разделкой кромок на металле толщиной до 15 мм, корневого шва в многопроходных швах с V- или Х-образ-пой разделкой кромок, а также сварку по заданному новышеп-пому зазору без разделки кромок металла толщиной до 50 мм. При-монедие этого способа в последние годы сокращается из-за труд-  [c.39]

По условию заполнения зазора пайку можно разделить на капиллярную и некаииллярную. По механизму образования шва капиллярная пайка подразделяется на пайку с готовым припоем, когда затвердевание шва происходит при охлаждении контактнореактивную пайку реактивно-флюсовую диффузионную. К некапиллярным способам относятся пайка-сварка и сварка-пайка.  [c.238]


При изготовлении тонкостенных оболочковых конструкций для химического аппаратостроения в целях защиты их поверхности от воздействия агрессивной среды и сохранения прочности и пластичности металла при низкой температуре используют самые разнообразные материалы (биметаллы, цветные металлы и сплавы, среднелегированные стали и др ) В связи с этим технология сварки таких конструкции достаточно сложна, нередко требует сочетания различных способов, специальных присадков, дополнительных мероприятий по предотвращению трещинообразования, защите сварочной ванны от окисления и т.д Для операций сборки и сварки цилиндрической части сосудов обычно применяют роликовые стенды, оборуд>я их paзличны и приспособлениями флюсовыми подушками, стяжными скобами, автоматическими головками для сварки, распорками, центраторами и др Сварку обечайки с днищем производят стыковыми швами за один или несколько проходов В стенки сосудов и аппаратов приходится вваривать патрубки, лючки, штуцера и другие элементы, сварные соединения которых часто являются инициаторами разрушения конструкции На рис 19 приведены в качестве примера некоторые варианты конструктивного оформления шт церов в аппаратах химического производства. Варианты с дополнительно усиливающими кольцами (см. рис 1 9,й) и утолщенными патрубками (см рис 19,6) выполняются угловыми швами, в зонах которых возникает значительная концентрация напряжений В данном месте часто появляются усталостные трещины Более предпочтительными с точки зрения повышения работоспособности являются варианты соединений с вытяжкой горловины (см рис.  [c.18]

Получение деталей из композитного материала производилось методом некапиллярной высокотемпературной пайкосварки. При этом был выполнен комплекс исследований по выбору оптимального зазора пайкосварного соединения, определяющего толщину прослойки по разработке технологии пайкосварки, включая подготовку поверхности выбор флюса и способа его нанесения на сплавляемую поверхность определение температурного режима проведения процесса пайкосварки и др. В процессе отработки технологических вариантов получения пайкосварного соединения установлено, что в случае горизонтального оплавления наблюдалось значительное загрязнение зоны оплавления с образованием большого количества флюсовых и шлаковых включений, пор, рыхлот и неснлавлепий, в результате чего снижалось качество и прочность соединения.  [c.82]

Значительное применение получил также способ пайки погружением деталей в ванны — соляные, флюсовые, из расплавленного припоя. В более редких случаях пайка производится кварцевыми лампами, при нагреве листовых графитовых нагревател.ей с приложением внешних сил,, в точечных машинах. Разработан метод экзофлюсовой пайки, производимой в печах, в которых осуществляется сгорание экзотермической смеси. Для повышения качества швов применяют высокотемпературную вибрационную пайку с помощью электромагнитных вибраторов.  [c.126]

В общем объеме работ по восстановлению деталей на ремонтных предприятиях различные способы восстановления составляют, % наплавка подслоем флюса 32 виброду-говая наплавка 12 наплавка в среде углекислого газа 20 наплавка порошковой проволокой без флюсовой или газовой защиты 10 плазменная наплавка 1,5 электро-контактное напекание 6 гальванические способы 5 электромеханическая обработка 1 электрошлаковая наплавка 1,5 заливка деталей жидким металлом 2 восстановление деталей полимерами 5 другие способы 5.  [c.123]

По способу удаления окисной пленки при пайке и лужении различают флюсовую и бесфлюсовую пайку, ультразвуковые пайку и лужение, абразивное, абразивнокристаллическое и абразивно-кавитационное лужение, пайку в активных, нейтральных газах и в вакууме. При ультразвуковой пайке и лужении, абразивном, абразивно-кристаллическом и абразивно-кавитационном лужении происходит механическое разрушение оксидной пленки на поверхности паяемого материала под слоем расплавленного припоя, смачивающего очищенную поверхность, за счет явления кавитации, вызываемой ультразвуковыми колебаниями, или абразивного воздействия твердых частиц, содержащихся в припое.  [c.249]

Но может происходить также и образование карбида марганца МпзС по реакции ЗМпО+4С=МпзС+ЗСО. Присутствие железной стружки разбавляет концентрацию марганца в сплаве и облегчает восстановление оксидов марганца. Выплавку ферромарганца производят как флюсовым способом с добавками известняка, так и бесфлюсовым — без присадки флюса. В результате получают высокоуглеродистый сплав и богатый марганцем малофосфористый шлак, содержащий до 50 % МпО. Этот шлак называют передельным. Его используют вместо марганцевой руды для производства низкофосфористого силикомарганца — полупродукта при производстве средне- и малоуглеродистого ферромарганца.  [c.239]

Можно выделить три группы процессов термической резки окислением, плавлением и плавлением-окислением. При резке окислением металл в зоне резки нагревают до температуры его воспламенения в кислороде, затем сжигают его в струе кислорода, используя образующуюся теплоту для подогрева следующих участков металла. Продукты сгорания выдувают из реза струей кислорода и газов, образующихся при горении металла. К резке окислением относятся газопламенная (кислородная) и кислородно-флюсовая резка. При резке плавлением металл в месте резки нагревают мощным концентрированным источником тепла выше температуры его плавления и выдувают расплавленный металл из реза с помощью силы давления дуговой плазмы, реакции паров металла, электродинамических и других сил, возникающих при действии источника тепла, либо специальной струей газа. К способам этой группы относятся дуговая, воздушно-дуговая, сжатой дугой (плазменная), лазерная и термогазоструйная резка.  [c.294]


Кислородно-флюсовая резка применяется не только для металлов, но и для резки бетона и железобетона. Отличие состоит в том, что поскольку бетон в кислороде не горит, при резке должны применяться флюсы с большей тепловой эффективностью, чем для металлов. Хороший результат дает флюс, состоящий из 75...85 % железного и 15...25 % алюминиевого порошков. Флюс к резаку подают по внешней схеме сжатым воздухом или азотом, вдувая газофлюсовую смесь в струю режущего кислорода. Можно резать бетон толщиной 90...300 мм со скоростью 0,15...0,04 м/мин при расходе флюса 20...42 кг/ч. Гораздо эффективнее процесс резки бетона кислородным копьем (рис. 159). При этом способе кислород продувают через стальную трубу 1 (копье) диаметром 10...35 мм с толщиной стенки 5...7 мм и длиной 3...6 м. В трубы большого диаметра закладывают стальные прутки, чтобы увеличить их массу, трубы малого диаметра обматывают проволокой. Конец трубы нагревают любым источником тепла (например, электрической дугой или газовым пламенем) до температуры воспламенения в кислороде, затем через рукоятку 2 подают кислород и прижимают копье к поверхности разрезаемого материала 3. В результате горения конца копья в кислороде образуются жидкотекучие оксиды железа, реагирующие с бетоном и образующие шлаки, которые выдуваются из полости реза. Копье при резке периодически поворачивают и перемещают  [c.309]

Формирование корня шва на флюсовой подушке позволяет выполнять автоматическую сварку однопроходных швов без разделки или с V-образной разделкой кромок на металле толщиной до 15 мм, корневого шва в многопроходных швах с V- или Х-образной разделкой кромок, а также сварку по заданному повышенному зазору без разделки кромок металла толщиной до 50 мм. Применение этого способа в последние годы сокращается из-за трудности плотного поджатия флюса под стык по всей его длине. В местах его неплотного поджатия образуются прожоги.  [c.118]

Оборудование для кислородно-флюсовой резки. Для кислороднофлюсовой резки разработаны различные установки, отличающиеся способом подачи порошка в рез (рис. 4.48). В нашей стране наибольшее распространение получила схема с внешней подачей флюса (рис. 4.48, а). Железный порошок струей кислорода, воздуха или азота подается из бачка флюсопитателя к серийному резаку для кислородной резки, снабженному специальной оснасткой для подачи порошка в рез. Газофлюсовая смесь, выходя из отверстий оснастки под небольшим (до 20°) углом к оси режущей струи, проходит через подогревающее пламя, где частички порошка нагреваются до температуры воспламенения, и поступает в режущую часть. Частички порошка в струе режущего кислорода сгорают с выделением определенного количества теплоты и поступают в рез. По этой схеме работают наиболее широко распространенные в промышленности установки.  [c.235]

Припой может быть пол чеи 1) предварительно (пайка готовым припоем) 2) в процессе пайки в результате локального контактного плавления соединяемых материалов между собой или с контактирующим покрытием, прокладкой (такой способ получил название контактно-реактивного) 3) контактным плавлением покрытия, припоя или прокладки с газом или паром депрессанта, находящегося в атмосфере, окружающей паяемое изделие (такой способ был назван контактным твердогазовым) [1—3] 4) взаимодействием паяемого маэернала с реактивным флюсом, в результате чего нз последнего вытесняется металл, иг зающий роль припоя (такой способ пайки был назван реактивно-флюсовым).  [c.18]

В связи с этим при пайке нашли применение следующие способы по удалению окисной пленки флюсовая с флюсами химического или электро.химического действия и бссфлюсовая — абразивная, ультразвуковая, в активных, инертных и нейтральных газовых средах, вакууме.  [c.21]

Для обеспечения физического контакта Мн и Мп в процессе пайки применяют различные способы удаления окисной пленки —флюсовой и бесфлюсовые. К бесфлюсовым способам пайки относят абразивную и ультразвуковую пайку, пайку в активных и инертных газовых средах и в вакууме.  [c.110]

Флюсовая пайка находит особенно широкое применение при газопламенной, индукционной, печной пайке, пайке погружением и других способах narpeBia. 11еобходимость удаления коррозионноактивных остатков и шлаков флюсов путем промывки изделия после пайки ие позволяет применять этот способ для конструкционно-сложных крупногабаритных и массивных изделий из-за нена--дежности или невозможности такой операции. Тем не менее отсутствие эффективных способов бесфлюсовой пайки для ряда конструкционных материалов при выбранных режимах пайки, большая стоимость специального оборудования, например вакуумных печей для предприятий единичного и мелкосерийного производства, является причиной широкого применения флюсовой пайки.  [c.133]

Способ ограничен соотношением размеров изделия н ванны и возможным снижением температуры жидкой среды в результате нагрева массивных изделий при погружении. Поэтому теплоемкость ваииы должна быть больше теплоемкости изделия, а паяемые детали не должны образовывать изолированных полостей, препятствующих погружению изделия в жидкую ванну и всестороннему их контакту с нагретой жидкой средой. Существенное преимущество пайки деталей в соляных и флюсовых ваииах — возможность совмещения этого процесса с нагревом под закалку.  [c.236]

Резка бетона и железобетона производится двумя способами кислородно-копьевой и порошково-копьевой резкой. Оба способа являются разновидностями кислородно-флюсовой резки,.  [c.205]

Наиболее широкое применение плазменная струя нашла для резки металлов. Плазменной струей целесообразно резать материалы, которые нельзя резать общеизвестными способами, таки- ми как кислородная или газо-флюсовая резка. Ктаки материалам относятся кера- МИКИ, алюминий, медь iT и др.  [c.100]

При проектировании изделий, выполняемых без готового припоя (способами контактно-реактивным, реактивно-флюсовым, а также диффузионньш или металлокерамическим), необходимо предусмотреть возможность осуществления при пайке небольшого давления для удаления избытка жидкой фазы нз зазора. При контактно-реактивной пайке такое давление предотвращает полное вытекание жидкой фазы из увеличивающегося при этом зазора.  [c.50]

При комбинации флюсовой пайки с пайкой в газовых средах или в вакууме подразумевали возможность флюсования паяемых поверхностей деталей перед пайкой. При комбинации вакуумной пайки с пайкой в газовых средах подразумевается предварительная продувка рабочего объема камеры газом с последующим ва-куумированием или заполнением камеры газом после вакууми-рования. Анализ возможных сочетаний от одного до трех элементов в группах 2 и 3 (по механизму образования паяного шва и по удалению окисной пленки) способов, определяющих в конечном счете физико-химические особенности пайки в целом, с одним из способов группы 4 (по источнику нагрева) позволил обнаружить, что с увеличением числа сочетающихся способов пайки в группах  [c.158]

В настоящее время нашли применение следующие способы пайки удаления окисных пленок флюсовая пайка и бесфлюсовые ее способы абразивная, ультразвуковая, шаберная, абразивнокавитационная, в активных газовых средах, в инертных газах и в вакууме (рис. 37).  [c.187]


Смотреть страницы где упоминается термин Способ флюсовый : [c.147]    [c.89]    [c.257]    [c.135]    [c.6]    [c.50]    [c.266]    [c.268]    [c.152]    [c.17]   
Производство ферросплавов (1985) -- [ c.145 , c.147 , c.157 ]



ПОИСК



Способы приготовления и нанесения флюсов



© 2025 Mash-xxl.info Реклама на сайте