Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технология турбин

Как известно, единственный путь повышения эффективности преобразования теплоты в механическую энергию — это увеличение разности температур на входе и выходе системы. Температуры на выходе снижены настолько, насколько позволяет уровень современной технологии. Турбины, применяемые в граждан-  [c.226]

Впервые в качестве самостоятельной дисциплины технология производства турбин была включена в учебный план специальности Производство паровых турбин втуза ЛМЗ, созданного в 1930 г. Преподавателем этого курса был инженер турбинного цеха ЛМЗ Б. В. Шостакович, один из авторов первого труда по технологии турбиностроения, освещающего в основном опыт ЛМЗ. Опыт ЛМЗ, в частности по обработке крупных деталей и по типизации технологических процессов, нашел также отражение в широко известных трудах проф. А. П. Соколовского, тесно сотрудничавшего с технологами турбинных заводов Ленинграда и содействовавшего повышению их деловой квалификации.  [c.10]


Это выражение очень часто используется в расчетах, так как огромное количество процессов подвода теплоты в теплоэнергетике (в паровых котлах, камерах сгорания газовых турбин и реактивных двигателей, теплообменных аппаратах), а также целый ряд процессов химической технологии и многих других осуществляется при постоянном давлении. Кстати, по этой причине в таблицах термодинамических свойств обычно приводятся значения энтальпии, а не внутренней энергии.  [c.18]

Ряд технологических процессов, особенно химической промышленности, связан с потоками нагретых сжатых газов. Расширение этих газов в газовой турбине позволяет получить энергию, которая обычно используется в этом же процессе, например для нагнетания тех же газов. В этом случае вал турбины непосредственно соединяется с валом турбокомпрессора. Такое комбинирование позволяет существенно снизить потребление энергии в технологическом процессе. К сожалению, оно используется еще недостаточно широко, во-первых, из-за косности мышления технологов, а во-вторых, из-за отсутствия турбин на нужные параметры. Часто используют авиационные двигатели, выработавшие свой ресурс.  [c.61]

Регенерировать можно не только тепловую энергию, но и энергию избыточного давления. Например, если в реакционной камере / (рис. 24.4) по условиям технологии необходимо избыточное давление, то исходные продукты 2 приходится сжимать компрессором 3, затрачивая на это электроэнергию. Однако часть этой энергии, а иногда даже больше энергии, чем затрачено (если, например, в реакторе J увеличивается объем газов), можно вернуть (регенерировать) за счет расширения получающихся продуктов 4 в турбине 5. Электромашина 6 при этом играет роль пускового двигателя, а также источника недостающей или потребителя избыточной мощности (в последнем случае электромашина работает в режиме генератора). Хорошим примером использования энергии давления является тур-  [c.205]

Известно, что газовые турбины требуют высококачественного топлива. Попытки использовать для них уголь оставались безуспешными из-за появления отложений солей щелочных металлов и абразивного действия золы на лопатки турбины. С развитием технологии низкотемпературного сжигания твердого топлива в псевдоожиженном слое стало возможным применение для газотурбинных установок (ГТУ) различных сортов углей. Это связано прежде всего с тем, что при сжигании топлива в псевдоожиженном слое в золе остается значительная часть солей щелочных металлов, а продукты сгорания после соответствующей очистки в двух-трех последовательно включенных циклонах не вызывают эрозии и коррозии лопаток турбины.  [c.15]


В соответствии с проектом два модуля котла будут работать на одну газовую турбину. Для ПГУ мощностью 635 МВт разработан проект турбины мощностью 50 МВт. Расчетная температура газов-на входе в турбину равна 870 °С. В первом цикле предусмотрена одна двухвальная турбий мощностью 530 МВт со следующими параметрами пара температура 538/538 °С, давление 16,5 МПа. Технология регулирования нагрузки заключается в поддержании постоянными высоты псевдоожиженного слоя и расхода воздуха от компрессора ГТУ при изменении отношения топливо — воздух и температуры в слое.  [c.21]

Специфические особенности процесса ЭХО обусловливают целесообразность его применения в условиях серийного производства. Наиболее эффективен процесс для производства лопаток газотурбинных двигателей и энергетических турбин. Наряду с этим технологию электрохимической обработки применяют для калибрования отверстий различной формы, изготовления полостей сложной конфигурации (штампов, пресс-форм, литейных форм), обработки заготовок корпусных деталей и др.  [c.306]

Рис. 10.10. Технология изготовления рабочего колеса турбины Красноярской ГЭС Рис. 10.10. Технология <a href="/info/768691">изготовления рабочего колеса</a> турбины Красноярской ГЭС
В большинстве машиностроительных конструкций повышение напряжений дает незначительный эффект вследствие ограниченности категории расчетных деталей, масса которых, как правило, составляет небольшую долю массы конструкции. Подавляющая часть — это нерасчетные корпусные детали. Для обширного класса машин (поршневых двигателей, компрессоров, турбин, насосов, металлообрабатывающих станков и т. д.) масса корпусных (преимущественно литых) деталей составляет 60-80% общей массы машин, а доля расчетных деталей не превышает 10 — 20%. Если учесть, что корпусные детали по условиям технологии изготовления выполняют с большими запасами прочности, то очевидно главные резервы уменьшения массы машин заложены в облегчении корпусных деталей.  [c.160]

Таким образом, освоение технологии литья турбинных лопаток новой конструкции и повышение их качества явилось новым этапом совершенствования технологии литья лопаток современных 1Л Д четвертого поколения, которые осуществлялись на ОАО УМПО в 1980 - 1990 гг.  [c.448]

В настоящее время в химической технологии применяются только активные турбины низкого (0,12...0,25 МПа), среднего (4 МПа) и высокого (6... 13 МПа) давления с температурой свежего пара до 530 С, конденсационные, с противодавлением и конденсационные с промежуточным отбором пара.  [c.301]

В каждом ремонте лопатки снимают с колеса турбины и устанавливают вновь. Поэтому напряженное состояние лопаток по зонам бандажных полок является переменным от ремонта к ремонту в пределах допустимых величин в рамках существующей технологии сборки. Однако в большин-  [c.626]

Существенное снижение удельного расхода металла было достигнуто путем улучшения технологии изготовления и, в частности, широкого применения сварки. Так, при проектировании статора гидротурбин для ряда ГЭС (Павловской, Каховской, Новосибирской) только благодаря применению сварной конструкции вместо литого статора была получена экономия 30 тп металла на одной турбине [21].  [c.78]

Как только станут доступны воспроизводимые образцы композитов, основное внимание следует уделить влиянию условий эксплуатации материала на сплошность поверхности раздела и механические свойства, зависящие от состояния поверхности раздела. Подобно тому как это было при разработке композитов А1 — В, такие исследования очень важны для установления точных параметров технологии изготовления материала, с тем чтобы получить именно то особое состояние поверхности раздела, которое необходимо для конкретных условий применения материала. Если композит предназначается, например, для лопаток газовых турбин, то конструктор должен установить реальные требования к этим анизотропным материалам с ограниченной пластичностью таким образом, чтобы применительно к условиям использования можно было эффективно воздействовать на свойства, зависящие от со стояния поверхности раздела, например, на поперечную прочность В данной главе показано, что в настоящее время известны основ ные принципы, с помощью которых может быть изменена струк тура поверхности раздела в металлах, армированных окислами Однако из-за отсутствия образцов с воспроизводимыми характе ристиками влияние изменения состава и структуры поверхности раздела на механические свойства композитов практически не изучено.  [c.351]


КПД, ОН оказался значительно более громоздким и тяжелым, чем другие двигатели той же мощности. В результате он не выдерживал конкуренции с изобретенными позже турбинами и две. Некоторые европейские фирмы вновь заинтересовались идеей двигателя внешнего сгорания после второй мировой войны. Успехи в области технологии конструкционных материалов позволили сделать двигатель экономичным, компактным и бесшумным. Учитывая возросший интерес к двигателю внешнего сгорания, рассмотрим принцип его работы и применимость в качестве источника энергии.  [c.78]

Вследствие этого как вариант обычных наземных ГАЭС были предложены подземные ГАЭС. Вода аккумулируется в небольшом верхнем водохранилище, откуда она по напорному трубопроводу направляется на турбины, расположенные в подземном машинном зале ГАЭС, который может находиться на тысячу метров ниже верхнего водохранилища. Создание столь больших напоров позволяет получать значительное количество электроэнергии при относительно небольшом, необходимом для этого количества объеме воды. Известно, что чем больше напор воды, тем меньше ее нужно для выработки одного к того же количества электроэнергии. Отработанная на турбинах вода отводится в подземное водохранилище. Подземные выемки для здания ГАЭС и нижнего водохранилища могут быть образованы с помощью бурения в скальных породах северо-восточных, северных и западных районов США. Технология такого бурения существует, а соответствующие высоконапорные турбины и насосы могут быть изготовлены. В нескольких таких местах проводятся инженерные исследования, и первая подземная ГАЭС может быть скоро создана. Могут быть использованы также существующие выемки в виде заброшенных шахт.  [c.245]

В энергетике благодаря однородности технологии производства электрической и тепловой энергии и однотипности (в принципе) оборудования (паровые и гидравлические турбины, котлы и реакторы АЭС, насосы и вентиляторы) имеются особенно благоприятные условия для использования типовых алгоритмов и программ. Это значительно облегчает условия по созданию и внедрению АСУ в энергетику. При однотипности технических средств автоматизации (ЭВМ типа ряд, управляющие ЭВМ, периферийные устройства) типовые программы найдут щирокое применение во всех звеньях управления энергетикой.  [c.276]

В 1949 г. коллектив конструкторов, технологов и рабочих ЛМЗ сделал новый шаг по пути совершенствования теплофикационных турбин. В это время были изготовлены турбины новой серии на повышенные параметры пара. В отличие от предыдущих серий одна турбина имела два регулируемых отбора пара, из первого отбора пар использовался для производства, а от второго направлялся для подогрева воды, идущей на теплофикацию,  [c.118]

Одним из таких факторов является так называемая технологическая наследственность, под которой в обш,ем случае понимается изменение эксплуатационных свойств деталей под влиянием технологии их изготовления. Технологическое наследование свойств, в том числе геометрических погрешностей, начинается с заготовки и проходит через весь процесс изготовления детали. Неточность заготовок и Обусловленное этим колебание припусков на обработку и сил резания непосредственно сказывается на точности ряда последующих операций обработки на металлорежущих станках, ведет к наклепу поверхностей, внутренним напряжениям, которые могут самым неожиданным образом проявить себя в уже готовой машине. Так, например, при высокой температуре, характерной для работы турбин, перераспределение внутренних напряжений приводит к короблению их лопаток.  [c.5]

Влияние наклепа на эксплуатационные показатели и, в частности, на усталостную прочность зависит от температуры, при которой работает деталь. При высоких температурах, которые характерны, например, для лопаток турбин, наклеп снижает усталостную прочность и сопротивление циклическим температурным нагрузкам. Правда, параллельно с наклепом в поверхностном слое возникают остаточные напряжения, и если они сжимающие, а не растягивающие, то положительно влияют на усталостную прочность. К взаимодействию указанных двух факторов добавляется влияние шероховатости поверхности. Все это требует тщательной отработки технологии, проведения значительного числа опытов, которые позволили бы найти оптимальное решение, обеспечивающее не только производительность и экономичность, но и надежную работу деталей,  [c.40]

Технологичность в своей новой трактовке и явилась основной предпосылкой к принципиальной ревизии как методов проектирования и конструирования машин, так и методов их изготовления. В силу этого за последние 10 лет основной проблемной задачей конструкторов и технологов, в частности заводов тяжелого машиностроения, являлось осуществление конструктивной и технологической преемственности как основы технологичности. Осуществление новых критериев технологичности явилось решающим с точки зрения возможности применения методов крупносерийного производства при изготовлении деталей и узлов машин, в частности турбин, турбогенераторов, двигателей, кранов, экскаваторов, металлургического и других видов оборудования.  [c.79]

Справочником по типам советских крупных турбин и генераторов является работа [Л. 147], малых — [Л. 64 и 197]. Сохраняет значение богатый конструктивный атлас Куколевского, содержащий много данных и по зарубежным турбинам [Л. 86]. Атлас [Л. 188] относится только к турбинам ЛМЗ теперь его почти полностью заменяет справочник [Л. 147]. Литера-туоа по гидродинамическому расчету турбинных лопастей будет указана ниже ( 10-2). Расчет деталей на крепость см. [Л. 36 и 64]. Указания по технологии турбин см. [Л. 31 и 73].  [c.13]

Российский двигатель АЛ-31Ф. Создание нового двигателя -это длительный и трудоемкий процесс, охватывающий комплекс работ конструкторов, металлургов, литейщиков и технологов машиностроения. Двигатель АЛ-31Ф четвертого поколения двухконтурный с совмещением внутреннего и внешнего контуров за турбиной, предназначен для двухмоторных семейств боевых самолетов Су (Су-27, Су-33, Су-ЗОМК, Су-37, Су-39 и др.). Температурные характеристики ГТД, которые показаны на рис. 222, находятся в пределах 1039 - 1150°С, а в момент форсажа - в пределах 1500 - 1600°С.  [c.446]


Двигатель АЛ-31Ф требователен к технологическим процессам изготовления и к допускам на размеры деталей, что, в свою очередь, потребовало значительного технического перевооружения производства, особенно внедрения новых технологий в литейном производстве. Задача освоения технологии изготовления новой конструкции авиационного двигателя АЛ-31Ф потребовала новых конструкций охлаждаемых лопаток. Методом литья на ОАО УМ-ПО внедрялись рабочие турбинные лопатки без припуска по перу конструкции штырковой (на первом этапе 1980 - 1985 гг.) и с циклонно-вихревой системой охлаждения (на втором этапе 1980 -1990 гг.). Конструкции их показаны на рис. 114. Наиболее сложная последняя конструкция с многочисленными перемычками с тонкими ребрами. Она имеет 19 охлаждаемых каналов, расположенных по углом 30° к оси лопатки, пятнадцатью перемычками и десятью отверстиями диаметром 0,85 - 0,95 мм, а длина отливки 150 мм, что значительно усложнило задачу изготовления керамических стержней по сравнению с отливкой первого варианта (см. рис. 204).  [c.446]

Разрабатываемые новые технологии должны были 0 беспечивать удовлетворительное металлургическое качество турбинных лопаток по физико-механическим свойствам сплава и по макро- и микроструктуре и остаточным литейным напряжениям. Жаропрочность металла лопаток при испытании на длительную прочность (для  [c.446]

До настоящего времени предприятия химической промышленности являются большими потребителями первичных энергоресурсов (топлива, теплоты и электроэнергии), получаемых со стороны. При правильной разработке энерготехнологической схемы производства можно не только значительно сократить потребление первичных энергоресурсов, но и даже полностью отказаться от потребления теплоты и электроэнергии, получаемых со стороны. Считается наиболее перспективным создание ЭХТС, в которых энергетическое оборудование (тепло-и парогенераторы, котлы-утилизаторы, паровые и газовые турбины, теплоиспользующие аппараты, холодильные установки, тепловые насосы и термотрансформаторы) входит в прямое соединение с химикотехнологическим оборудованием, составляя единую систему. В такой ЭХТС всякому изменению параметров химической технологии должны сопутствовать и соответствующие изменения энергетических параметров и наоборот. Таким образом, в ЭХТС создается тесная взаимосвязь и взаимообусловленность между технологическими и энергетическими стадиями производства.  [c.308]

Паровые турбины. На конструкцию паровой турбины влияют начальные параметры пара (до- и сверхкритические), режим ее работы (базовый, пиковый или полупиковый), конечная влажность пара, особенности технологии изготовления и другие факторы. Турбины делят по внутренним конструктивным признакам на активные и реактивные. Для активных турбин характерно наличие перегоро-  [c.189]

Влияние покрытий на эксплуатационные характеристики жаропрочного сплава, применяемого при изготовлении лопаток газовых турбин, изучалось [223] на установке Коффина с построением кривых термической усталости. Для выяснения характера разрушения оценивали изломы и проводили металлографический анализ микрошлифов продольного сечения. Многокомпонентные покрытия СоСгА1 , КЮтА1 , Ni o rAlY наносились на образцы с применением электронно-лучевой технологии со скоростью конденсирования 2 мкм/мин.  [c.129]

Объектами исследования были изломы, сформированные в эксплуатации ВС в процессе роста усталостных трещин в трех элементах конструкций кронштейне, изготовленном из алюминиевого сплава Д16Т, системы управления самолетом Ил-76 стойке шасси, изготовленной из титанового сплава ВТ-22, самолета Ан-74 диске II ступени турбины, изготовленном из жаропрочного никелевого сплава ЭИ-698, двигателя НК-8-2у. Все сплавы имели структуру в соответствии с требованиями технологии изготовления указанных элементов  [c.265]

При такой кинетике разрушения период развития многоцикловой усталостной трещины, рассчитанный но общему числу макролиний и блоков мезолиний, составляет около 190 полетов самолета для лопатки с максимальной наработкой на двигателе № А82У122108. Последняя проверка рабочих лопаток П1 ступени турбины этого двигателя по бюллетеню № 1043-БЭ проводилась за 74 ч до разрушения лопатки, что при средней продолжительности полетов за период после последнего ремонта двигателя в 2,6 ч составляет около 30 полетов. Из графика на рис. 2.25 видно, что 30 полетов до разрушения лопатки в момент ее проверки трещина в лопатке имела длину около 15-16 мм. Однако она не была выявлена при последнем контроле лопатки в то время, как опыт эксплуатации двигателей НК-8-2у показывает, что технология проверки  [c.619]

Итак, при существующей технологии сборки рассеяние напряженности лопаток будет приво-i дить к низкой и высокой интенсивности протека- ния начального процесса ползучести, что выразит- ся в минимальном и максимальном размере зоны первоначального растрескивания материала. Да- лее от этой зоны будет происходить более медлен- ное или более быстрое зарождение и распростране- i ние усталостной трещины. Оценить к какому из указанных слз чаев относятся лопатки по позиции № 4 (см. табл. 11.7) не представляется возможным. Отсутствуют данные по напряженности лопаток для указанных выше двух крайних случаев по их сборке. Вместе с тем проведенный анализ позволил заключить, что наработка лопаток в эксплуатации при существующей технологии их сборки в колесе турбины была достаточной для исчерпа- ния их ресурса. Поэтому при возрастании наработ- i ки лопаток в эксплуатации за пределами 8000 ч число сл гчаев появления в них трещин будет уве- личиваться.  [c.627]

Соответственно с ростом перевозочной работы расширяется и совершенствуется производственная база судостроения, проводится типизация судов и унификация судовых конструкций, осуществляется сборка судовых корпусов из укрупненных элементов (секций, блоков), монтируемых вместе с элементами судового оборудования непосредственно в заводских цехах до подачи на стапели. Работы Г. В. Тринклера, Д. Б. Тана-тара, В. А. Ваншейдта, М. И. Яновского и других исследователей, конструкторов и технологов во многом способствовали производственному и эксплуатационному освоению судовых дизель-редукторных, дизель-электрических и паротурбинных силовых установок большой мощности. На основе опыта изготовления судовых паровых турбин и авиавдонных газотурбинных двигателей были построены первые судовые газовые турбины, особенно перспективные в применении к судам на подводных крыльях и на воздушной подушке. С 60-х годов по мере развития отечественной электронной промышленности и совершенствования судовых паровых котлов, двигателей, генераторов, рулевых и швартовочных устройств, погрузочно-разгрузочных механизмов и пр. все шире стали использоваться на судах системы централизации и автоматизации управления и контроля, которые значительно улучшают эксплуатационные качества судов, повышают производительность труда судовых команд и освобождают их от многих трудоемких и тяжелых работ.  [c.307]

Первый отечественный турбовинтовой двигатель ТВ-2М был сконструирован в 1953 г. коллективом, возглавлявшимся А. Д. Швецовым и позднее руководимым П. А. Соловьевым. Летные испытания двигателя на экспериментальных самолетах и летающих лабораториях подтвердили возможность обеспечения высокой скорости и высоты полета и высокую экономичность работы силовой установки. Конструкторским коллективом А. Г. Ивченко был создан турбовинтовой двигатель АИ-20 с осевым десятиступенчатым компрессором, кольцевой камерой сгорания и трехступенчатой турбиной. Его взлетная мощность равна 4000 э. л. с., удельный вес по взлетной мощности составил 0,27 кз/э. л. с., тогда как наименьший удельный вес поршневого двигателя М-63 — 0,464 жз/л. с. Ресурс турбовинтовых двигателей, при запуске в серийное производство не превьппавший 200 рабочих часов, в результате совершенствования технологии и конструктивных улучшений был увеличен до нескольких тысяч часов. Началась разработка конструкций пассажирских самолетов с турбовинтовыми двигателями.  [c.393]


Влияние две на окружаюигую среду огромно. По имеющимся оценкам в г. Лос-Анджелесе (США) в 1968 г. автомобили выбрасывали в атмосферу только за один день 1700 т углеводородов, 9500 т СО и 620 т NO,. Борьба с вредными выбросами ведется по трем направлениям усовершенствование технологии топлива, технологии двигателей и технологии очистки выхлопных газов. По-видимому, к ним следует добавить четвертое — правильная текущая эксплуатация и контроль за состоянием автомобилей. Необходимо убрать с дорог устаревшие, работаюише на пределе автомобили, что явится существенным шагом на пути снижения уровня вредных выбросов. Проблема эмиссии требует системного подхода, направленного на улучшение всех компонентов. В будущем возможно настанет момент, когда усовершенствование ДВС достигнет своего предела и потребуется замена ДВС другими двигательными установками. Ряд автомобилестроительных фирм уже занимался или занимается поиском таких решений. В качестве альтернативы рассматриваются паровые и газовые турбины, двигатели внешнего сгорания и электрические двигатели, работающие от аккумуляторных батарей.  [c.70]

Первую работоспособную конструкцию паровой турбины предложил шведский инженер Карл Густав Патрик де Лаваль. Он происходил из старинной французской семьи, эмигрировавшей в Швецию еще в XVI веке, когда в самом разгаре было преследование гугенотов. Лаваль окончил университет в Упсале в 1872 году и начал работать в качестве инженера по химической технологии и металлургии. Но молодого инженера увлекла идея создать совершенную конструкцию сепаратора для молока — крайне нужное шведским животноводам устройство. Чтобы сепаратор хорошо отделял сливки от молока, его необходимо вращать с большой скоростью — примерно 6000—7000 оборотов в минуту. Около 1878 года конструкция сепаратора была создана. Для приведения его во вращение Лаваль применил примитивную паровую турбину. Конструкция ее, конечно, была весьма далека от современной, но успех сепаратора с турбинным приводом дал изобретателю средства для работы над конструкцией паровых турбин.  [c.141]

Ф Полученный опыт позволил разработать новую технологию изготовления рабочих и сопловых лопаток для четырехступенчатой турбины энергоагрегата, реализуемую на базе отдела станков с программным управлением (ОСПУ)  [c.49]

Сжигание угля с предварительной его газификацией является еще одной перспективной технологией, обладающей возможностями удовлетворения все возрастающих требований по предотвращению вредных выбросов в атмосферу при меньших затратах по сравнению с традиционной технологией. Кроме того, это дает потенциальную возможность достигнуть высокого термического КПД путем разработки усовершенствованных высокотемпературных газовых турбин. Схема с предварительной газификацией угля характеризуется значительноменьшим количеством твердых отходов, чем традиционная технология сжигания с использованием скрубберов, — в основном в виде спекшихся шлаков. Технические исследования показывают, что эта схема требует лишь около 60% воды по сравнению с обычной угольной ТЭС, использующей традиционную установку по серогазоочистке. Дальнейшее совершенствование схемы с предварительной газификацией угля в перспективе может снизить потребление воды до уровня, составляющего 10% потребностей при применении традиционной технологии ТЭС на угле.  [c.84]

С использованием газификатора. Тексако с температурой парогазовой смеси в турбине 1100°С При использовании малосернистых западных углей количество твердых отходов снижается почти в 3 раза Основное потребление воды и образование твердых отходов происходит на установке по производству метанола Предполагается использование фосфорной кислоты в остальном то же, что и для предыдущей технологии С использованием бинарного цикла  [c.91]


Смотреть страницы где упоминается термин Технология турбин : [c.268]    [c.89]    [c.130]    [c.13]    [c.305]    [c.617]    [c.78]    [c.51]    [c.141]    [c.128]   
Турбинное оборудование гидростанций Изд.2 (1955) -- [ c.237 ]



ПОИСК



Глава семнадцатая. Изготовление турбин 17-1. Производство турбин и общая характеристика их технологии

СБОРКА И ИСПЫТАНИЕ ТУРБИН НА ЗАВОДЕ , Общие положения технологии сборки машин



© 2025 Mash-xxl.info Реклама на сайте