Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Установка традиционная

Использование аппаратов со струйными течениями позволяет создавать простые технологические установки, имеющие ряд преимуществ перед установками, традиционными. Эти преимущества обусловлены предельной простотой аппаратов и возможностью проведения в них одновременно нескольких технологических процессов, например, абсорбции и сжатия газа, вакуумирования и охлаждения, очистки газа от примесей, его охлаждение и сжатие. Указанные преимущества открывают широкие перспективы создания новых типов многофункционального малогабаритного оборудования и установок для технологических систем химической, нефтехимической, нефтегазодобывающей и перерабатывающей отраслей промышленности.  [c.7]


Топки с псевдоожиженным слоем под давлением могут применяться на ТЭС в комбинированном цикле производства электроэнергии, который по сравнению с традиционным дает преимущество в эффективности использования угля и тепла с большими возможностями по обеспечению требований к защите окружающей среды. Термодинамический к.п.д. таких установок увеличивается с ростом температуры поступающих в газовую турбину газов и повышением доли газотурбинной части в суммарной мощности установки.  [c.16]

Применение традиционных пневмометрических систем для определения давления и вектора скорости гетерогенной среды усложняется наличием в потоке дисперсного компонента. Так, при измерении давления необходимо следить, чтобы приемники давления и магистрали, соединяющие их с измерительным прибором, не засорялись дисперсным компонентом. Установка различных сепараторов, а также вертикальное расположение манометрических трубок позволяют отчасти избежать закупорки магистралей.  [c.247]

Традиционно в разделе Динамические исследования механизмов курсовых проектов по ТММ рассматривается задача снижения неравномерности движения ведущего звена механизма путем установки соответствующего маховика.  [c.94]

Установки СВЧ применяются для приготовления блюд из сырых продуктов или разогрева готовых блюд из замороженного состояния. Время тепловой обработки значительно сокращается по сравнению с традиционными методами за счет действия внутренних источников тепла. Уменьшение времени воздействия высоких температур способствует сохранению питательной ценности и улучшению вкусовых качеств продукта.  [c.310]

Первый контур АЭС с реактором БН-600 (см. рис. 9.10) расположен в корпусе реактора 1 (рис. 9.13) и включает активную зону 2, циркуляционный насос 5, теплообменник 4 первого контура. Все элементы первого контура расположены под уровнем натрия 3, отделенного от крышки корпуса слоем газа. Здесь применена интегральная компоновка, которая отличается от петлевой, когда насос и теплообменник первого контура расположены вне корпуса реактора. В реакторе БН-600 имеется три петли первого контура. Второй контур АЭС образован теплообменником 4, циркуляционным насосом б и парогенератором 7. Давление теплоносителя второго контура (натрия) несколько больше, чем первого, что препятствует утечке радиоактивного натрия из первого контура во второй. Теплоноситель второго контура передает теплоту активной зоны рабочему телу третьего контура — воде и водяному пару. В третьем контуре используется паротурбинная установка с промежуточным перегревом пара между частями высокого 8 и низкого 9 давления. Конденсатно-питательный тракт 10 имеет традиционную для таких установок схему. Применение трехконтурных  [c.348]


Методика контроля наклонными РС-ПЭП практически мало отличается от традиционной методики с использованием совмещенных ПЭП. Для настройки чувствительности, установки рабочей зоны развертки, настройки глубиномера следует применять сварные СОП с акустическими свойства.ми, шероховатостью поверхности, шириной, толщиной и формой шва, практически тождественными этим параметрам штатных сварных соединений. В качестве контрольных отражателей применяют боковые, а также вертикальные отверстия, просверленные в металле сварного шва (рис. 6.49).  [c.352]

Материалы, обсуждаемые в этой главе, как правило, представляют собой смесь двух или более компонентов большинство из них получают методами порошковой металлургии. Некоторые из них изготовляют методом внутреннего окисления, при котором один из металлов сп.лава превращается в окисел. При этом получаемые композиции обладают особыми электрическими, механическими, фрикционными и технологическими свойствами, превосходящими свойства традиционных металлов и сплавов. Эти композиционные материалы находят применение в электрических контактах, в постоянных магнитах, при сварке сопротивлением, в электрических разрядниках, в электрохимических установках и электрических щетках.  [c.416]

Пользуясь простым традиционным методом для изучения, например, влияния на процесс какой-либо одной величины, остальные нужно сохранять неизменными, что не всегда возможно или затруднительно из-за большого количества переменных. При этом важно быть уверенным, что корреляции, полученные на конкретной установке (модели) в определенных условиях, можно распространить, пусть даже с какими-либо ограничениями, на другие аналогичные процессы, осуществляемые в реальных аппаратах. Вот тут на помощь приходит теория подобия.  [c.104]

Эти установки пока не вселяют уверенности, что произойдет промышленная ориентация на использование энергии ветра. Возможность этого зависит от ряда факторов точки зрения правительства США удельных капитальных затрат на производство электроэнергии традиционными методами удельных капитальных затрат для ВЭУ освоения технологии изготовления нетрадиционных источников энергии.  [c.110]

Как видно из приведенного перечня, в схеме МГД-генера-тора нет традиционного оборудования для производства электроэнергии на тепловых электростанциях парового котла и турбины, а также установок по подаче питательной воды. Все это должно значительно упрощать и удешевлять энергетическую установку.  [c.197]

При всем многообразии перспективных направлений развития тепловой микроскопии традиционные методы и средства низко- и высокотемпературной металлографии не утратили своего значения и широко применяются в практике заводских и исследовательских лабораторий. Однако все возрастающие требования технического прогресса ставят задачу коренного совершенствования существующих средств тепловой микроскопии, прежде всего, в направлении увеличения производительности и информационной мощности установок. Известно [3], что информационная мощность любой исследовательской установки может быть определена по формуле  [c.7]

Однако важнейшим преимуществом традиционных методов световой тепловой микроскопии (низко- и высокотемпературной металлографии) является их доступность они могут быть осуществлены в любой лаборатории, располагающей соответствующими серийными установками, либо реализованы благодаря специально сконструированным несложным приставкам к стандартному испытательному или металлографическому оборудованию.  [c.11]

За последние 20 лет в химической промышленности широко развивалось использование глубокого холода за счет применения хладонов и хладоносителей. Защита от коррозии оборудования, работающего в этих средах, также рассмотрена в этой книге. Материалы по коррозии в среде аммиака, используемого традиционно в холодильных установках для получения умеренного холода, будут включены в книгу продолжающегося издания, посвященную коррозионным проблемам в азотной промышленности.  [c.4]

Особенно эффективно удаление СОз из воды в установках обессоливания. Вакуумно-эжекционные установки не требуют производственных площадей, потребляют в 10 раз меньше воздуха, чем традиционные установки с насадкой, не нуждаются в постоянном наблюдении и обслуживании.  [c.111]


Под этим углом зрения традиционные представления о типах станков как о принципиально отличных конструкциях в ряде случаев могут быть изменены. Очень часто новый тип станка Можно осуществить постановкой только отдельных специфических узлов на уже существующее единое основание. Так, например, до появления специальных станков современной формации задача обработки заготовок деталей в случаях изменения их конструкции разрешалась путем установки на универсальных станках специальных высокопроизводительных приспособлений, которые нередко кинематически связывались со станком. Такое направление в конструировании объяснялось тем, что с экономической точки зрения под угрозу морального износа было целесообразнее ставить не дорогостоящий специальный станок, а значительно более дешевые приспособления.  [c.169]

По мере того как будет возрастать значение использования возобновляемых энергоисточников, может возникнуть необходимость в модификации ряда традиционных экономических критериев. Энергетические балансы с учетом приходов и расходов имеют значение только тогда, когда запасы энергетических ресурсов ограничены. А при возобновляемых ресурсах мы имеем дело не с запасами, а с потоками энергии. Эффективность преобразования энергии часто в большой степени зависит от размещения предприятий. Капитальные и эксплуатационные затраты, так же как и характер использования энергии, могут щироко варьировать в зависимости от локальных, социальных и экологических условий и от степени влияния нового энергетического источника на существующую систему энергоснабжения. Возможно, уже в 90-х годах и определенно после 2000 г. при использовании экономических критериев необходимо будет в гораздо большей степени, чем в 50-х годах, принимать во внимание социальные различия, темпы их изменений и изменения в отношении защиты окружающей среды. Инвестиции в развитие возобновляемых энергоисточников могут быть весьма велики, а степень риска, связанная с развитием новых технологий, настолько высока, что привлечение правительственных финансов необходимо уже на первом этапе, даже в странах с экономикой, основанной на частном предпринимательстве. Таким образом, инвестиционная политика при развитии возобновляемых энергоисточников должна учитывать особые факторы при оценке будущих процентных ставок, инфляции и девальвации в перспективе, а также эффективности преобразования на установках и их сроков службы.  [c.213]

Опытными работами доказана возможность достижения более высокой скорости бурения, чем на традиционно используемых установках. Скорости бурения скважин большого диаметра в крепких горных породах, которые получены в испытаниях, соответствуют лучшим мировым показателям проходки. Для взрывных скважин это становится возможным при частоте следования импульсов не менее 15-20 в секунду. Пропорциональная зависимость скорости бурения от частоты следования импульсов прослежена в интервале до 25 импульсов в секунду (естественно, при сохранении оптимальных условий промывки).  [c.18]

Можно предположить, что аргоновые лазеры и лазеры на основе иттриево-алюминиевого граната найдут широкое применение в технологических процессах средней энергоемкости, а мощные СОз-лазеры займут особое положение. Установки на их основе вытеснят традиционное оборудование для резки, сварки, сверления отверстий, термообработки материалов и изделий в области тяжелого машиностроения. Здесь СО,-лазеры будут вне конкуренции. Простота управления интенсивностью лазерного излучения в сочетании с использованием современных средств программного управления позволит использовать лазерные установки в автоматизированных системах.  [c.322]

Наиболее близкое из них к осуществлению — это, по-видимому, газотурбинная установка замкнутого цикла (авторское свидетельство № 166202). Суть изобретения — в замене традиционных рабочих тел — воздуха или инертного газа — такими экзотическими составами и смесями, как газообразная сера или йод, окислы азота, хлористый алюминий и т. д. Во время сжатия в компрессоре эти газы ведут себя вполне благопристойно и мало чем отличаются от воздуха. Но при нагреве перед турбиной их молекулы начинают диссоциировать, распадаться на две, три или даже четыре части. Значит, в два, три или четыре раза увеличивается и газовая постоянная — произведение объема одного моля газа на его давление, деленное на абсолютную температуру. Газа как бы становится во столько же раз больше. Соответственно больше проходит его через турбину, и мощность ее значительно увеличивается. Конечно, это не происходит совсем даром на диссоциацию расходуется много тепла, которое приходится дополнительно подводить к газу. Но каждая порция газа становится как бы более энергоемкой сначала она больше поглощает энергии, а потом при рекомбинации больше ее отдает. В результате полезная работа цикла существенно возрастает. А кроме того, когда мы подводим к газу тепло, оно большей частью уходит не на нагрев, а на диссоциацию, так что температура газа почти не меняется. Фактически теплоподвод идет по кривой, приближающейся к изотерме, и рабочий цикл газовой турбины становится более выгодным. Так, его эффективный к.п.д. возрастает на некоторых режимах примерно втрое по сравнению с циклом на обычных газах.  [c.273]

Контактные экономайзеры применяются преимущественно в котельных установках. Это объясняется в первую очередь тем, что уходящие газы котлов являются наиболее чистыми и не загрязнены технологическим уносом. К тому же в котельных установках вопросам повышения к. и. т. традиционно уделяется сравнительно большее внимание, чем в печных или сушильных установках. Следует также учесть, что вода, нагретая в контактных экономайзерах котлов, часто используется непосредственно в котельной, например для питания котлов или подпитки тепловых сетей (после соответствующей обработки).  [c.15]

В связи с тем что большинство промышленных котлов, работающих на природном газе, в качестве резервного топлива имеют мазут, одной из проблем, которые надо решать при установке контактных экономайзеров в газифицированных котельных, является их временный переход на жидкое топливо. Эта проблема возникла еще в начале 60-х годов, когда началась эксплуатация первых экономайзеров на промышленных предприятиях г. Москвы. Нагретая в экономайзерах вода направлялась непосредственно потребителю. Поэтому опасения за качество воды, контактировавшей с продуктами сгорания жидкого топлива, в которых вполне возможно наличие сажи и оксидов серы, вынуждало эксплуатационников на этот период отключать контактные экономайзеры и временно переходить на традиционную схему подогрева воды. Перед обратным переходом котлов на газовое топливо производили чистку газоходов, промывку насадки и другие операции, а в начале эксплуатационного периода контактных экономайзеров нагретая вода сбрасывалась п дренаж и потребителю не направлялась. Разумеется, все это усложняло эксплуатацию и снижало число часов использования контактных экономайзеров.  [c.106]


Установка контактных или контактно-поверхностных котлов в отопительных котельных параллельно с традиционными поверхностными отопительными решает задачу повышения к. и. т. лишь частично контактные и контактно-поверхностные котл ы работают с высоким к. п. д., а поверхностные — с присушим им недостаточно высоким, не отвечающим современным требованиям. Установка контактных экономайзеров за отопительными котлами нецелесообразна, поскольку, во-первых, сооружение их в котельной приводит к увеличению пролета здания котельной и удорожанию его сооружения, а установка экономайзеров вне котельной, размещаемой в центре жилого района, по-видимому, неприемлема во-вторых, температура воды на выходе из экономайзера недостаточна для использования ее в системе горячего водоснабжения.  [c.211]

В числе других недостатков указано на существенное увеличение аэродинамического сопротивления установки, что требует оснащения ее тягодутьевым устройством. В статье [62] рассмотрена и упоминавшаяся в гл. II интересная конструкция (патент Газ де Франс ), в которой за счет установки контактного воздухоподогревателя и подачи в горелку традиционного котла нагретого увлажненного воздуха существенно повышается влагосодержание газов и их точка росы, вследствие чего конденсация в котле начинается при более высокой температуре, т. е. получена возможность повысить температурный уровень системы отопления, увеличивается количество теплоты, выделяющейся при конденсации, и соответственно значительно повышается к.и.т. Для котлов большой теплопроизводительности такая комбинированная установка может оказаться весьма целесообразной.  [c.247]

Следует подчеркнуть, что широкое распространение конденсационных поверхностных котлов и конденсационных блоков-приставок (экономайзеров) к традиционным котлам объясняется соображениями не только энергосбережения, но и экологическими, поскольку определенное количество вредных оксидов углерода, азота и серы (если она содержится в топливе) растворяется в конденсате. Именно благодаря этому и снижается pH конденсата. Таким образом, в конденсационных поверхностных аппаратах наряду со снижением удельного расхода топлива уменьшаются и вредные выбросы в атмосферу, правда, добавляется проблема нейтрализации конденсата перед его сбросом в канализацию, за исключением котлов теплопроизводитель-ностью менее 0,045 Гкал/ч. Снижение вредных выбросов в поверхностных конденсационных котлах в определенной степени достигается также и за счет уменьшения расхода топлива, а не только за счет растворения газов в конденсатной пленке. В тех случаях, когда концентрация вредных выбросов в конденсационных котлах превышает нормативную, требуется установка устройств для мокрой очистки газов типа скрубберной, поскольку для более полного улавливания вредных выбросов необходима, как и для тепло- и массообмена, большая поверхность контакта и другие условия орошения, аналогичные тем, которые достигаются в контактных экономайзерах и котлах. Отсюда нетрудно сделать вывод о том, что, во всяком случае с точки зрения экологической, последние имеют несомненные преимущества перед конденсационными поверхностными теплообменниками и котлами.  [c.248]

Теплоутилизаторы для глубокого охлаждения дымовых газов ниже точки росы существенно отличаются от оборудования, охлаждающего газы до температуры более 120—150 °С. С одной стороны, эффективность глубокого охлаждения дымовых газов значительно выше, чем при их охлаждении до традиционных температур (120—150 °С), а затраты на установку собственно оборудования для глубокого охлаждения газов, особенно контактных экономайзеров, сравнительно невелики и не превышают затрат на установку традиционного теплоутилизационного оборудования той же мощности. С другой стороны, необходимые при глубоком охлаждении газов меры по предотвращению конденсации остаточных водяных паров в газоходах и дымовой трубе либо сооружение газоходов и дымовой трубы, приспособленных к конденсации паров, а также меры по антикоррозионной защите, которые в отдельных случаях необходимо принимать, увеличивают общий объем работ, повышают трудоемкость и стоимость установки в целом.  [c.253]

В 1824 г. Хэмфри Дэви [2], основываясь на данных лабораторных исследований в соленой воде, сообщил, что медь можно успешно защитить от коррозии, если обеспечить ее контакт с железом или цинком. Он предложил осуществлять катодную защиту медной обшивки кораблей с использованием прикрепленных к корпусу жертвенных железных блоков при соотношении поверхностей железа и меди I 100. При практической проверке скорость коррозии, как и предсказывал Дэви, заметно уменьшилась. Однако катодно защищенная медь обрастала морскими организмами в отличие от незащищенной меди, которая образует в воде ионы меди в концентрации, достаточной для уничтожения этих организмов (см. разд. 5.6.1). Так как обрастание корпуса уменьшает скорость судна во время плавания. Британское Адмиралтейство отвергло эту идею. После смерти X. Дэви в 1829 г. его двоюродный брат Эдмунд Дэви- (профессор химии Королевского Дублинского университета) успешно защищал железные части буев с помощью цинковых брусков, а Роберт Маллет в 1840 г. специально изготовил цинковый сплав, пригодный для использования в качестве жертвенных анодов. Когда деревянные корпуса судов были вытеснены стальными, установка цинковых пластин стала традиционной для всех кораблей Адмиралтейства . Эти пластины обеспечивали местную защиту, особенно от усиленной коррозии, вызванной контактом с бронзовым гребным валом. Однако возможность общей катодной защиты морских судов не изучалась примерно до 1950 г., когда этим занялись в канадском военно-морском флоте [3]. Было показано, что при правильном применении препятствующих йбрастанию красок и в сочетании с противокоррозионными красками катодная защита кораблей возможна и заметно снижает эксплуатационные расходы. Катодно защищенные, а следовательно, гладкие корпуса уменьшают также расход топлива при движении кораблей.  [c.216]

Турбоэнергетические системы. Использование солнечной радиации находит применение и в традиционной двухступенчатой схеме преобразования энергии тепловая— -механическая— -электрическая. В частности, NASA разрабатывает солнечные турбоэлектрические генераторы, известные под названием Санфлауэр (подсолнечник) [169]. Одной из наиболее сложных проблем является создание системы охлаждения. Применение покрытий позволяет поддерживать оптимальные температурные параметры цикла, уменьшать площадь и массу радиатора. На рис. 8-24 представлена схема солнечной энергетической системы с турбогенератором [170]. Теплота, полученная от выхлопных газов, и скрытая теплота конденсации излучаются с поверхности радиатора. Коэффициент полезного действия установки зависит от температуры котла, которая ограничивается жаропрочностью материалов, и от температуры радиатора. Без 204  [c.204]

Использование эжекционных аппаратов в системах нефтяной и газовой промышленности позволяет создавать простые технологические установки [2, 7, 8], имеющие ряд преимуществ перед традиционными установками. Эти преимущества обусловлены не только предельной конструктивной простотой аппаратов, но и возможностью проведения в них одновременно нескольких технологических процессов, например абсорбции и сжатия газов [9, 10, 11], вакуумирования и охлаждения [12], очистки газов от мехпримесей и охлаждения [13, 14], а также возможность рекуперации энергии технологических потоков [15] и интенсификации технологических процессов с помощью кавитации. Указанные преимущества открывают широкие перспективы создания новых типов многофункционального оборудования для технологических систем нефтяной и газовой промышленности.  [c.215]


Более высокий КПД энергоблока, работа ющего по бинарному циклу, по сравнению с традиционной энергетической установкой той же мощности имеет два существенных преимущества экономия топлив1гых ресурсов и снижение выбросов теплоты в биосферу.  [c.105]

В ближайшем будущем использование угля для производства электроэнергии потребует усиленного внимания к серогазоочистке и к обогащению угля. Технология сжигания угля в кипящем слое при атмосферном давлении является прогрессивной альтернативой традиционному методу сжигания на пылеугольной ТЭС и обладает рядом потенциальных преимуществ. При новом методе отпадает необходимость в установке мокрых скрубберов для удаления SO2, появляется возможность сжигать различные сорта угля, снижается содержание окислов азота в дымовых газах, обеспечивается улавливание серы в щелочной золе западных подбитуминозных углей и лигнита.  [c.84]

Сжигание угля с предварительной его газификацией является еще одной перспективной технологией, обладающей возможностями удовлетворения все возрастающих требований по предотвращению вредных выбросов в атмосферу при меньших затратах по сравнению с традиционной технологией. Кроме того, это дает потенциальную возможность достигнуть высокого термического КПД путем разработки усовершенствованных высокотемпературных газовых турбин. Схема с предварительной газификацией угля характеризуется значительноменьшим количеством твердых отходов, чем традиционная технология сжигания с использованием скрубберов, — в основном в виде спекшихся шлаков. Технические исследования показывают, что эта схема требует лишь около 60% воды по сравнению с обычной угольной ТЭС, использующей традиционную установку по серогазоочистке. Дальнейшее совершенствование схемы с предварительной газификацией угля в перспективе может снизить потребление воды до уровня, составляющего 10% потребностей при применении традиционной технологии ТЭС на угле.  [c.84]

Использование нетрадиционных источников энергии, например С0лне4 н0й энергии, а также все возрастающая степень утилизации вторичных тепловых ресурсов потребуют гораздо большей емкости аккумулирующих систем по сравнению с системами, используемыми в настоящее время в сочетании с традиционными генерирующими установками, поскольку выработка энергии на их основе носит неравномерный характер.  [c.174]

Современная атомная энергетика, как отечественная, так и зарубежная, основана в первую очередь на реакторах, охлаждаемых водой (в СССР это реакторы ВВЭР и РБМК). Атомная энергетика будущего ориентируется на расширенное воспроизводство ядерного топлива, поскольку ресурсы последнего, как и традиционных топлив, ограничены. В СССР успешно эксплуатируются реакторы-размножители БН-350 и БН-600, проектируются более мощные реакторы с охлаждением жидким металлом. В последние годы (1979—1982) Атомиздатом и Энергоиздатом выпущена серия учебных пособий Ядерные реакторы и энергетические установки под общей редакцией академика Н. А. Доллежаля, в которых содержится описание характеристик ядерных реакторов, методик расчета теплофизических параметров каналов различного конструкционного исполнения, анализ теплотехнической надежности и др.  [c.3]

Нами на примере кварцевых материалов, руд Полмастундровскго, Кухи-Лал, Шерловогорского, Солнечного, Ковдорского и Ловозерского месторождений исследованы гранулометрические характеристики готового продукта, кинетика разрушения при электроимпульсном дроблении и измельчении сырья, а также осуществлено сравнение с традиционно используемыми аппаратами (стержневыми, центробежными мельницами и валковыми дробилками, электрогидравлическими установками). В ходе проведения экспериментов осуществлялся ситовый анализ как надрешетного, так и подрешетного продуктов. Шламы анализировались методом статического отмучивания /59/.  [c.94]

При создании установки для избирательного измельчения геологических проб (рис.6.2, разработка НИИ ВН и института Механобр ), предназначенной для оснащения геологических управлений и институтов отрасли, основными требованиями к установке являлись сокращение числа стадий дезинтеграций по сравнению с традиционными схемами переработки проб, повыщенная избирательность процесса с целью возможности получения мономинеральных фракций, отсутствие взаимного заражения проб, потерь при обработке и удобство обслуживания.  [c.260]

Установка для дезинтеграции кварцевого стекла и керамики предназначена для получения крупки заданных размеров (-5+0.25 мм, с выходом -0.25 менее 10%) без загрязнения продукта материалом износа рабочих органов камеры (не более 0.1% по весу). Полученный продукт является исходным питанием для специальных шаровых мельниц с целью получения водного кварцевого шликера. Используемые традиционно механические дробилки и мельницы не позволяют добиться требуемого гранулометрического состава и химической чистоты продукта, что увеличивает потери сырья и требует специальной химической очистки. Расчет электроимпульсного процесса показал необходимость двухстадиальной схемы разрушения, т.к. одноступенчатая схема разрушения не позволяла получить требуемый гранулометрический состав материала.  [c.263]

Испытания установки подтвердили исходные данные по производительности дробления и обоснованность выбора числа и параметров электродных систем и параметров генераторов. Установка могла продолжительное время работать с оптимальной зафузкой секций при периодической корректировке зафузки секции 1-й стадии дробления за счет изменения подачи руды питателем. Показана возможность стабильной параллельной работы нескольких электродных устройств от одного зарядного устройства. Из-за определенных методических трудностей и субъективного отношения заказчика представительных сопоставительных исследований предложенного электроимпульсного и принятого на фабрике традиционного способа  [c.286]

Другим важным вопросом обеспечения прочности и ресурса атомных реакторов, не получавшим отражения в традиционных расчетах энергетических установок по уравнениям (2.1) —(2.3), являлся анализ сопротивления деформациям и разрушению при циклическом нагружении [2,5-7,16]. Как следует из данных гл. 1, в процессе эксплуатации атомных реакторов число циклов нагружения на основных режимах изменяется в достаточно широких пределах - от (2- 5) 10 при гидроиспытаниях до (1 2) Ю при программных изменениях мощности и до 10 —10 с учетом вибро-нагруженности. Систематические исследования прочности в этом диапазоне числа циклов были начаты применительно к энергетическим установкам в середине 50-х годов, а в середине 60-х годов были сформулированы основные (преимущественно деформационные) критерии разрушения и свойства диаграмм циклического деформирования [17,18 и др.]. По опытным данным, полученным на лабораторных образцах, было показано, что при числе циклов до 10 циклические пластические деформации оказываются сопоставимыми (в диапазоне числа циклов 10 —10 ) или существенно большими (в диапазоне числа циклов 10 -5 10 ), чем циклические упругие деформации. При этом в зависимости от типа металлов и условий нагружения (с заданными амплитудами деформаций или напряжений) пластические деформации по мере увеличения числа циклов могут возрастать (циклически разупрочняющиеся металлы), уменьшаться (циклически упрочняющиеся металлы) или оставаться постоянными (циклически стабильные металлы). Указанные особенности поведения металлов при циклическом упругопластическом деформировании обусловливают нестационар-ность местных напряжений и деформащ1Й в зонах концентрации при стационарных режимах внешних нагрузок. Для малоцикловой области уравнения кривых усталости и сами кривые усталости при числах циклов 10 —Ю представлялись не в амплитудах напряжений (как для обычной многоцикловой усталости при числах циклов 10 —10 ), а в амплитудах упругопластических деформаций.  [c.40]

Он применил конструкцию, уже практиковавшуюся в железе, но не употреблявшуюся еще в железобетонных сооружениях. Фрейсине изогнул поверхность свода волнообразно, наподобие того, как это было в сводиках из волнистого железа. Такая складчатая конструкция устранила традиционное разделение сооружения на несущие и несомые элементы, превратив несомое в несущее. Благодаря этому толщина свода была доведена до 35 см у основания и до 9 см в вершине. Большую трудность создавали громадные размеры кружал, установка и передвижение которых были очень сложным делом. Кроме того, складчатая конструкция свода исключала возможность простого перемещения один раз установленного кружала по всей оси здания. После отливки каждой складки предстояло вынуть из нее кружало, опустив его вниз, и уже только после переставить его на новое место. Но при такой комбинации не представлялось возможным пользоваться кружалами, равными по величине аркам складок при таких размерах их нельзя было опустить вниз. Стремясь выйти из этих затруднений, Фрейсине решил строить свод в три приема, разделив сооружение на три горизонтальные зоны.  [c.212]

С целью снижения веса конструкции при проектировании башен Шухов сделал попытку перейти от использования прокатного профиля на трубчатые стержни, предусмотренные патентом № 1896 (2.8), в первоначальном варианте проекта башни в г. Тюмени (1906 г.). Однако применение для стоек специальных соединений швейцарской марки g/ и дорогая сборка сделали это рациональное техническое решение экономически невыгодным. Сборка гиперболоидных конструкций из труб (диаметр которых постепенно уменьшается от 6 до 3") нашла применение для наблюдательных сетчатых мачт на военных кораблях в США и России в связи с высокими требованиями, предъявленными к легкости конструкции. Для большей устойчивости в отдельных случаях гиперболоидная система собиралась из швеллерных стержней (Шаболовская башня, г. Москва, 1922 г. — см. рис. 175 и 184). До 1905 г. в напорных башнях для крепления стержней и колец применялись болты. При строительстве Николаевского водопровода (1907 г.) башня до установки резервуара была собрана на болтах, и только затем болтовые соединения заменялись заклепочными. Впоследствии основным техническим решением соединения элементов остова башен и резервуара использование клепки стало традиционным. С развитием и применением сварки ее стали использовать (с 1930 г.) для элементов как резервуара, так и высотного узла башни.  [c.82]


Учитывая наличие на ТЭС оборудования физико-химической очистки (ФХО), можно рассматривать водоподготовительные установки (ВПУ) ТЭС как комплексный узел, способный осуществить доочистку — подготовку добавочной воды требуемого качества в цикл ТЭС из частично или полностью очищенных городских стоков. При этом исходя из конкретных условий — близости расположения ТЭС к очистным сооружениям, наличия на них схем первичной или вторичной очистки, особенностей энергетического производства и схем водоподготовки — наряду с рекомендуемым в нормах технологического проектирования использованием доочищенных сточных вод решение задачи возможно также путем использования сточных вод только после биологической очистки без доочистки, после упрощенной физико-химической очистки и даже после механической очистки. При этом необходимая доочистка должна осуществляться потребителем. Во всех рассмотренных случаях, предусмотренных и не предусмотренных нормами технологического проектирования, задачи химводоочист-ки (ХВО) ТЭС по подготовке добавочной воды усложняются и расширяются. Такое расширение технологических функций ВПУ ТЭС требует Дополнения традиционной технологии водоприго-товления соответствующими стадиями очистки, разработки новых и корректировки применяющихся технологических процессов.  [c.12]

Контактные экономайзеры иепользуют преимущественно в котельных установках. Это объясняется в первую очередь тем, что уходящие газы котлов являются наиболее экологически чистыми. К тому же вопросам повышения к.и.т. котельных установок традиционно уделяется сравнительно большее внимание, чем печных или сушильных, а вода, нагреваемая в контактных экономайзерах котлов, часто используется непосредственно в котельной (например, для приготовления питательной воды котлов или подпиточной воды тепловых сетей).  [c.22]

Выше был и перечислены основные работы по монтажу контактных экономайзеров. При установке контактно-поверхност-ных агрегатов типа АЭМ или котлов типа КПГВ объем работ должен быть допол нен операциями, проводимыми при монтаже традиционных поверхностных котлов и экономайзеров. Речь идет о монтаже rasoiBoro оборудования горелочных устройств, систем их автоматического управления и регулирования и т. д. В установках с промежуточным теплообменником, особенно при их сооружении вне здания, главное внимание должно быть уделено предотвращению замерзания воды в секциях теплообменника, калачах, перепускных штуцерах, в арматуре, причем в процессе и эксплуатации, и монтажа. Поэтому целесообразно при выполнении монтажных работ, если они ведутся в холодное время года, устанавливать на водоподводящих трубах заглушки внутри здания, чтобы исключить возможность попадания воды (до полного завершения монтажных работ) в наружные трубопроводы и в теплообменник. Помимо упомянутой выше проверки работы водораспределителя и плотности корпуса тепл оутилизатора, включая его люки, в объем предпусковых работ входит также проверка работоспособности плотности  [c.223]

Основные особенности котла с топкой кипящего слоя и котельной установки в целом по сравнению с котлами, оборудованными традиционными слоевыми топочными устройствами, рассмотрим на примерах реконструкций двух котлов ДКВР-2,5-13 (рис. 5.2) и  [c.191]


Смотреть страницы где упоминается термин Установка традиционная : [c.133]    [c.423]    [c.66]    [c.85]    [c.117]    [c.212]   
Решения - теория, информация, моделирование (1981) -- [ c.83 , c.85 , c.86 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте