Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поляризация света линейная

Следовательно, различают три вида предельной поляризации света линейную, круговую и эллиптическую (с вращением вектора вправо или влево см. рис. 42).  [c.67]

Теперь можно полностью истолковать этот эксперимент. При падении на первое зеркало естественного (неполяризованного) света под углом Брюстера отраженный свет оказывается полностью поляризованным. От второго зеркала он либо отразится полностью (П2 II ni рис. 2. 13, а) или совсем не отразится от него (П2 X пх рис. 2.13, б), так как в последнем случае второе зеркало отражает свет только той поляризации, которая отсутствовала в пучке, отраженном от первого зеркала. Контрольными опытами нетрудно показать, что именно поляризация света при первом отражении и определяет условия отражения от второго зеркала. Для этого можно заменить первое зеркало каким-либо поляризатором (например, поляроидом или призмой Николя см. 3.1). Изменяя поляризацию падающего на второе зерка.по света, легко перейти от максимальной к минимальной интенсивности света на выходе. Укажем также, что если одно из диэлектрических зеркал заменить обычным металлическим, то ни при каком положении другого зеркала не удается добиться исчезновения света. Следовательно, при отражении света от металлического зеркала никогда не получается линейно поляризованная волна (см. 2.5).  [c.88]


Перевод круговой поляризации в линейную достигается введением при помощи какого-либо устройства дополните.пьной разности фаз о п 2 двух волн, поляризованных во взаимно перпендикулярных направлениях. Обычно для этой цели используется пластинка в четверть длины волны (см. гл. 1П). Призма Френеля фактически также служит устройством, обеспечивающим введение дополнительной разности фаз двух волн, поляризованных во взаимно перпендикулярных направлениях. Такой способ обладает тем преимуществом, что достигаемый сдвиг по фазе мало зависит от длины волны падающего света.  [c.99]

Такие пластинки изготовляют обычно из кварца, а иногда и из тонких слоев слюды, которая, несмотря на то является двуосным кристаллом, может быть использована в этих целях. Свойства пластинки Х/4 легко проверить, поместив ее между двумя скрещенными поляризаторами. Если при вращении анализатора интенсивность прошедшего света не меняется, то толщина подобрана правильно — на выходе из пластинки Получается циркулярно поляризованный свет. Добавив еще одну такую пластинку, можно снова перевести круговую поляризацию в линейную, в чем легко убедиться вращением анализатора. В по-добных опытах, конечно, должно быть выдержано упомянутое выше условие, т. е. вектор Е в волне, падающей на пластинку, должен составлять угол л/4 с ее плоскостью главного сечения. Это достигается относительным вращением поляризатора и пластинки вокруг направления луча. Здесь следует указать, что если направление колебаний вектора Е в падающей волке совпадает с оптической осью пластинки 1/4 (или с направлением, перпендикулярным этой оси), то через пластинку пройдет лишь одна волна. В таком случае из пластинки выйдет линейно поляризованная волна.  [c.117]

Рассмотрим, какая будет поляризация света, если в одном направлении распространяются две монохроматические линейно поляризованные волны. В плоскости, перпендикулярной к направлению распространения света, концы векторов напряженности будут совершать гармонические колебания с одинаковой частотой, но в разных направлениях и с разными амплитудами, при этом разность фаз колебаний остается постоянной (не изменяется со временем).  [c.34]

Линейная, круговая и эллиптическая поляризации — разновидности пол юй поляризации света.  [c.35]

Такая интерпретация достаточно удовлетворительно описывает все количественные закономерности и отвечает на все законные вопросы. Тем не менее такая интерпретация неудовлетворительна. Чтобы в этом убедиться, рассмотрим кристалл (см. рис. 19), в котором оба луча света распространяются без поглощения. Как показывает эксперимент и объясняет электромагнитная теория света, на выходе из кристалла наблюдается эллиптически поляризованная волна. Чтобы это объяснить с точки зрения поляризации фотонов, придется допустить, что на выходе из кристалла фотоны совершают скачкообразное изменение своей поляризации из линейной в эллиптическую, причем обе группы фотонов с различной линейной поляризацией совершают переход в одно и то же состояние эллиптической поляризации. Чтобы построить теорию такого перехода, необходимо считать, что поведение фотонов с взаимно перпендикулярными поляризациями коррелировано между собой,  [c.39]


В соответствии с этой аналогией с механикой весомых тел мы будем рассматривать также и другие случаи физических процессов, в которых функция Я содержит члены, линейные относительно скоростей, как случаи со скрытым движением, хотя в настоящее время сюда относятся случаи, где существование такого скрытого движения не может быть с несомненностью доказано, как, например, при взаимодействии между магнитами и электрическими токами. Для магнитов, как известно, уже Ампер предположил существование скрытого движения оно обнаруживает свое влияние и при электромагнитном вращении плоскости поляризации света, как это отмечает У. Томсон, хотя здесь и нельзя обнаружить участия электрических токов.  [c.437]

Многие лазеры имеют линейно-поляризованное излучение, что позволяет строить измерения на исследовании изменения поляризации света.  [c.219]

ДИСПЕРСИЯ [волн — зависимость фазовой скорости гармонических волн от их частоты звука — зависимость фазовой скорости гармонических звуковых волн от их частоты линейная спектрального прибора — характеристика спектрального прибора, определяемая производной от расстояния между спектральными линиями по длине света оптического вращения — зависимость оптической активности вещества от длины волны проходящего через него линейно поляризованного света пространственная — зависимость тензора диэлектрической проницаемости среды от волнового вектора, приводящая, например, к вращению плоскости поляризации света — зависимость абсолютного показателя преломления вещества от частоты света]  [c.229]

МЕЖЗВЁЗДНАЯ ПОЛЯРИЗАЦИЯ — линейная (реже круговая) поляризация излучения далёких звёзд. Линейная М. п. характеризуется степенью поляризации Р (чаще всего выражается в процентах) и позиционным углом 0, задающим плоскость преимуществ, колебаний электрич. вектора приходящего излучения (см. Поляризация света). Круговая М, ц. описывается степенью поляризации д п её знаком, показывающим направление вращения электрич, вектора. Эти характеристики могут быть выражены через Стокса параметры  [c.82]

Рассмотрим дифракцию света основного порядка на трехмерной голограмме, имеющей слой, толщина которого превышает длину волны света. Примем поверхность голограммы плоской, а голограммную структуру простой, образованной только двумя плоскими волнами света. Причем поляризация света линейная, s-типа, т. е. векторы электрического поля перпендикулярны плоскости падения лучей. Решение этой задачи получено Г. Когель-ником.  [c.196]

Холестерики оптически одноосны и отрицательны так как направления осей молекул в отличие от нематиков и смектиков перпендикулярны оптической оси. Спиральная структура холестерина приводит к появлению оптической активности, т. е. к вращению плоскости поляризации света. Линейно поляризованный свет, проходящий вдоль оптической оси перпендикулярно молекулярным слоям, последовательно изменяет направление электрического вектора по спирали на угол, пропорциональный числу прошедших слоев, т. е. толщине кристалла. Среди обычных кристаллов значительной оптической активностью обладает альфа-кварц, поворачивающий плоскость поляризации при прохождении 1 мм на 20°. Оптическая активность холестериков значительно больше — она достигает 18 000°, что составляет 50 полных оборотов на миллиметр тол-  [c.105]

При постоянных силе света 1 и угле падения а освещенность Е экрана, а следовательно его яркость, будет меняться обратно пропорционально квадрату расстояния г экрана фотометра до источника. Соотношение (5) будет справедливо при условии, что расстояние г достаточно велико по сравнению с размерами светящейся части источника света (точечный источник). Оставляя постоянными силу света 1а и расстояние г и меняя толькэ угол а падения лучей на экран, получим изменение освещенности (яркости) его пропорционально косинусу этого угла, б) В фотометрах часто применяют метод изменения яркости, основанный на явлении поляризации света. Линейно поляризованный свет, проходя через анализатор, будет ослаблен пропорционально соз а (фиг. 2), где а—угол между  [c.90]


Пусть на такую молекулу, поляризуемость котолой отлична от нуля, только вдоль АВ (рис. 13.5) падает линейно-поляризованный свет, причем так, что электрический вектор падающего света, колеблющийся вдоль оси Z, составляет некоторый угол -ф с осью молекулы АВ. Положим, что АВ расположена в плоскости XZ. Из-за полной анизотропии молекулы возбуждение диполя под действием светового поля возможно только вдоль АВ, другими словами, вынужденное колебание будет вызываться вектором — составляющей вектора Ё вдоль АВ. Ввиду того что составляет отличный от 90" угол с направлениями ОХ и 0Z, вдоль оси (под углом 90° к первоначальному направлению падения света) распространяются световые волны с колебаниями электрического вектора как вдоль оси Z, так и вдоль оси X, т. е. происходит деполяризация рассеяшюго под углом 90° света. Линейная поляризация рассеянного света имела бы место, если бы рассеянный свет был обусловлен только колебанием электрического вектора вдоль оси 2, т. е. Ф О, Е- у. = 0. Поэтому в качестве количественной характеристики степени деполяризации удобно пользоваться отношением интенсивности рассеянного света /(. с колебанием электрического вектора вдоль оси X к интенсивности рассеянного света с колебанием электрического вектора  [c.316]

Таким образом, если в падающей волне (х и Ец находятся в одной фазе, то в отраженном свете между взаимно перпендикулярными компонентами х и Ег появится сдвиг фазы, зависящий от ф и п. Следовательно, явление полного внутреннего отражения позволяет получить эллиптически-поляризо-ванный свет, как и пропускание света через кристаллическую пластинку. Разумеется, для осуществления эллиптической поляризации при полном внутреннем отражении надо, чтобы падающий пучок не был естественным, но обладал поляризацией, например, линейной (см. 109).  [c.485]

Для того чтобы результирующее колебание осталось линейно поляризованным, плоскость симметрии неизбежно должна повернуться. Для определения направления колебаний в результирующей линейно поляризованной волне надо сложить две поляризованные по кругу вол11Ы после прохождения ими равного пути в оптически активной среде, т. е. надо найти плоскость симметрии. Как видно из рис. 20.2, б, результирующее колебание будет направлено по А А, т. е. плоскость поляризации света повернется вправо на угол ф, так что фпр—ф = флсв + Ф или ф= (фпр—флеп)/2.  [c.74]

Уравнения (279) имеют точно форму уравнений Лагранжа, но Н теперь содержит также члены первой степени относительно скоростей. Движения не могут происходить точно в обратном порядке. Маятник, с которым соединен вращающийся волчок, имеет (как мы это уже видели в 22) для колебаний, при которых его центр тяжести движется по кругу, разные периоды колебаний для одного и для другого направлении обращения, в то время как волчок вращается в одну и ту же сторону. Совершенно аналогично этому потенциал электрических токов, если имеются постоянные магниты, содержит члены, линейные относительно сил тока или скоростей. От этого обстоятельства зависит электромагнитное вращение плоскости поляризации света. Эта поразительная аналогия, разумеется, не служит доказательством того, что при только что упомянутых физических явлениях действительно играют роль скрытые вращательные движения. Но эта аналогия может быть самым естественным образом объяснена этой гипотезой и указывает во всяком случае на то, что сравнительное изучение обоих родов явлений обещает объяснение дальнейших фактов. Движение твердого тела, рассматриваемое в описанном примере, является, между прочим, чистым моноциклом, если силы 9I и имеют как раз такие значения, что А иС меняются очень медленно в сравнении с В, в противном случае это — смешанный моноцикл.  [c.495]

КРИСТАЛЛЫ валентные (атомные) содержат в узлах кристаллической решетки нейтральные атомы (С, Ge, Те и др.), между которыми осуществляется гомеополярная связь, обусловленная квантово-механическим взаимодействием глобулярные представляют собой частный случай молекулярных кристаллов и имеют вид клубка полимеров жидкие обладают свойствами как жидкости (текучестью), так и твердого кристалла (анизотропией свойств) внутри малых объемов идеальные не имеют дефектов структуры иопные обладают гетерополярной связью между правильно чередующимися в узлах кристаллической решетки положительными и отрицательными ионами квантовые характеризуются большой амплитудой нулевых колебаний атомов, сравнимой с межатомным расстоянием металлические образуются благодаря специфической химической связи, возникающей между ионами кристаллической решетки и электронным газом (Си, А1 и др.) молекулярные (Лг, СН , парафин и др.) формируются силами Ван-дер-Вальса, главным образом дисперсионными нитевидные вытянуты в одном направлении во много раз больше, чем в остальных оптические [активные поворачивают плоскость поляризации света вокруг падающего линейно поляризованного луча анизотропные обладают двойным лучепреломлением, состоящим в том, что луч света, падающий на поверхность кристалла, раздваивается в нем на два преломленных луча двуосные имеют две оптические оси, вдоль которых свет не испытывает двойного лучепреломления одноосные (имеющие одну оптическую ось отрицательные, в которых скорость обыкновенного светового луча меньше, чем скорость распространения необыкновенного луча положительные, в которых скорость распространения обьпсновенного светового луча больше, чем скорость распространения необыкновенного луча))] КРИСТАЛЛИЗАЦИЯ— образование кристаллов из паров, растворов, расплавов веществ, находящихся в твердом состоянии в процессе электролиза и при химических реакциях  [c.244]


Часто под Д. с. понимают процедуру искусств, снижения степени поляризации света, необходимую для проведения эксперимента или функционирования он-редел, оптич. устройства. В тех случаях, когда потери яркости пучка допустимы, для этой цели используют рассеяние света в мутной среде или на матовой поверхности. Задача полной (или, точнее, истинной) Д. с. без снижения яркости светового пучка представляется практически неразрешимой. Поэтому при решении конкретных задач поляризац. оптики процедуру истинной Д. с. заменяют процедурой псевдополяризации. При этом каждая монохроматич. компонента светового пучка в каждый момент времени и в каждой точке пространства (точнее в пределах любой площадки когерентности) сохраняет исходную степень поляризации, но вследствие пространственной, временной или спектральной модуляции состояния поляризации пучок в целом для практических целей становится неотличимым от неполяризованного. Временная модуляция состояния поляризации света может осуществляться, напр., путём вращения с разными скоростями помещённых в световой пучок линейных фазовых пластинок. Для получения пространственной (по сечению пучка) поляризац, модуляции могут использоваться клиновидные фазовые пластинки. При работе с пучками широкого спектрального состава эффективными псевдодеполяриааторами могут служить сильнохроматич. фазовые пластинки, изготовленные из прозрачных кристаллов с большим двойным лучепреломлением (т. н. деполяризаторы Л но). Их использование приводит к спектральной модуляции поляризац. состояния света.  [c.583]

Поляризационный К. о. нрименяется для анализа состояния поляризации света. Общий принцип устройства " превращение исследуемого света в свет, поляризованный линейно (при визуальных измерениях) или циркулярно (при фотоэлектрич. измерениях). При визуальных измерениях обычно применяют дополнит, полутсыевые устройства, благодаря которым измерение производится путёц уравнивания яркостей двух полей (см. Полу теневые приборы). Фотоэлектрические методы более быстры, удобны и точны [2].  [c.428]

Магнитооптические М. основаны на изменении оптич. свойств веществ под действием магн. поля (Фарадея эффект, Керра эффект, Зеемана эффект, Ханле эффект и др.) и применяются в основном в лаб. исследованиях для измерения магн. индукции слабых, средних и сильных магн. полей (как постоянных, так и переменных). Линейная зависимость угла поворота плоскости поляризации света от магн. индукции, отсутствие электрич, цепей в области измеряемого магн. поля, практич. безынерционность магнитооптич. эффекта Фарадея обусловливают перспективность при-  [c.700]

Для наклонно падающего света коэф. отражения и поглощения, а также фазовые сдвиги ф при отражении зависят от состояния поляризации света. Для s-поля-ризов. излучения величина коэф. отражения мово-тоЕно растёт с увеличением угла падения а зависимость ВР(а) для р-поляризов. излучения имеет вид кривой с минимумом при а ar os (1/х). При а = О и а = я/2 значения RP и Д соваадают. Вследствие отличия RP от й и фР от ф при отражении от металла наклонно падающей линейно поляризов. волны она становится эллиптически поляризованной. Это используется для определения оптич. параметров кии (см. Френеля формулы).  [c.111]

Из многочисл. магнитооптич. эффектов для М. с. наиб, применение нашел Фарадея эффект в прозрачных веществах. Периодически меняющееся магн. поле приводит к периодич. изменению угла вращения плоскости поляризации света, прошедшего через магнитооптич. элемент, помещённый в магн. поле. Угол поворота плоскости поляризации пропорц. длине пути света в веществе и при достаточной прозрачности среды может быть сделан сколь угодно большим. Важной особенностью магнитооптич. модуляторов является постоянство коэф. удельного вращения плоскости поляризации в ИК-диапаэоие длин волн. Это повышает конкурентоспособность магнитооптич. устройств при больших длинах волн оптич. излучения по сравнению с электрооптическими, в к-рых управляющее напряжение линейно возрастает с увеличением длины волны света. В магнитооптич. модуляторах света удаётся достичь глубины модуляции 40% на частотах модуляции до 10 Гц.  [c.184]

МЮЛЛБРА МАТРИЦА — матрица линейного преобразования (матричный оператор), применяемая для анали-тич. описания действия поляризац, оптич. элементов (поляризаторов, фазовых пластинок, отражающих поверхностей, тонких плёнок) на произвольным образом поляризованные световые пучки (см. Поляризация света). М. м. представляет собой квадратную 4х 4-матри-цу М, к-рая связывает 4-компонентный вектор Стокса S светового пучка, прошедшего через оптич. элемент, с Вектором Стокса S исходного пучка S =MS. Действие совокупности к оптич. элементов на световой пучок с вектором Стокса S описывается произведением соответствующих M.m. S причём мат-  [c.224]

Разность частот, интенсивносте] ) и поляризаций встречных воли в кольцевом лазере создаётся также с помощью магнитооптических Керра аффектов, возникающих при отражении от ферро-магн. зеркал резонатора. Эти эффекты проявляются в зависимости характеристик отражённого света от вектора иа.магеиченности ферромагнетика J и от направления распространения и поляризации падающего света. Б случае меридионального и полярною эффектов Керра в плоскости падения) происходит изменение поляризации падающего линейно поляризованного излучения. При зкваториальном эффекте Керра (/ перпендикулярен плоскости падения) интенсивность отражённого излучения зависит от /], Разность частот линейно поляризованных встречных волн (с поляриза-  [c.251]

НОА) — поляризац. самовоздействие света большой интенсивности в среде, состоящее в простейшем случае в нелинейном (зависящем от интенсивности оптич. излучения) повороте плоскости поляризации линейно поляризов. света. НОА — нелинейный аналог явления естеств. оптической активности. Количеств, характеристика НОА — угол поворота плоскости поляризации света (р, к-рый для данного вещества, как правило, пропорционален интенсивности света I и длине пути света в нелинейной среде Ь <р = (Скоа  [c.305]

Действие магнитооптического затвора основано на линейном магн.-оптич. эффекте (Фарадея аффекте) — зависимости угла поворота плоскости поляризации света, распространяющегося в среде, от напряжённости магн. поля, приложенного к ней. О. з. содержит ячейку Фарадея (оптич. среда с большой Верде постоянной, находящаяся в магн. поле соленоида), к-рая установлена между двумя скрещенными поляризаторами. Управление затвором осуществляется изменением тока соленоида. Важным свойством, от-  [c.453]

ПОЛЯРИЗАЦИОННЫЙ СВЕТОФИЛЬТР — светофильтр, действие к-рого основано на явлении интерференции поляризов, лучей. Простейший П. с, представляет собой хроматин, фазовую пластинку (см. Компея-сатпр оптический), расположенную между Двумя поляризаторами, поляризующие направления к-рых параллельны (перпендикулярны) друг другу и составляют угол 45° с оптич. осью пластинки. Т. к. фазовый сдвиг 6 между обыкновенным ( о) и необыкновенным (п ) лучами, прошедшими через пластинку длиной I, зависит от длины волны Я, (6 = 2п1(пд — n )lX), то состояние поляризации, а следовательно и интенсивность выходящего света (см. Интерференция поляризованных лучей), также имеет спектральную зависимость. При достаточно большой разности показателей преломления фазовой пластинки ( о— п состояние но.ляриаации выходящего из неё света может меняться в зависимости от X от линейной, совпадающей с падающей, через все фазы эллиптической, до линейной, ортогональной исходной. Если поляризация света, прошедшего фазовую пластинку, совпадает с поляризующим направлением поляризатора на выходе, то наблюдается максимум в интенсивности выходящих интерферирующих поляризов. лучей если соответствующие поляризации ортогональны, то наблюдается минимум. Таким образом, П. с. в зависимости от 1 или полностью пропускает свет, или почти полностью поглощает. Это свойство П. с. используется для решения ряда спец, задач спектроскопии, напр, для подавления одной или неск. спектральных линий излучения на фоне др. компонент спектра или для изменения спектрального распределения анергии в источниках сплошного спект-ра.  [c.64]


П. н. обладает поляризацией, т. е. вектор её амллв-] туды определ. образом ориентирован в поперечной плоскости. В частности, различают линейную, круге- ] вую и эллиптич. поляризации в зависимости от формы кривой, к-рую описывает конец вектора амплитуды (см. Поляризация волн, Поляризация света). Понятие П.  [c.86]


Смотреть страницы где упоминается термин Поляризация света линейная : [c.48]    [c.22]    [c.36]    [c.185]    [c.860]    [c.203]    [c.76]    [c.648]    [c.97]    [c.165]    [c.349]    [c.250]    [c.637]    [c.56]    [c.343]    [c.343]    [c.343]    [c.396]    [c.610]    [c.118]   
Оптика (1977) -- [ c.224 , c.225 ]

Общий курс физики Оптика Т 4 (0) -- [ c.37 , c.397 ]



ПОИСК



Линейная поляризация

Поляризация

Поляризация света

Поляризация света круговая линейная

Свет Поляризация



© 2025 Mash-xxl.info Реклама на сайте