Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Никель Давление паров

Основными проблемами термовакуумного напыления нихрома, длительное время являющегося наиболее распространенным материалом резистивных пленок, являются значительная разница в парциальных давлениях паров никеля и хрома и повышенная активность сплава ко многим тигельным материалам. При температуре 1300 хром испаряется в 8 раз быстрее никеля.  [c.443]

Цирконий сильно окисляется воздухом при температуре 300— 400° С, то весьма устойчив в воде. Он пригоден для изготовления защитных оболочек тепловыделяющих элементов, охлаждаемых водой или жидкими металлами (натрием, калием). Нелегированный цирконий теряет свою стойкость в воде при температуре 300—320° С. Следовательно, стойкость его сильно зависит от температуры. С добавлением к цирконию 1,5% олова, 0,12% железа, 0,05% никеля и 0,1% хрома (циркалой 2) окисная пленка не разрушается. Сплав циркалой 2 устойчив в воде и паре при высоких температурах. С увеличением концентрации азота и углерода в сплаве стойкость его в водяном паре при высоком давлении понижается. Стойкость сплава сильно зависит и от состояния его поверхности чем чище обработана поверхность, тем выше стойкость сплава. Гладкая поверхность достигается травлением в 35-процентной азотной кислоте с концентрацией 1—2% фтористого водорода, при комнатной температуре. Скорость равномерной коррозии циркония при высоких температурах обычно не превышает 0,01—0,02 мм год. В воде, содержащей кислород, при температуре 318° С скорость его коррозии составляет 0,01—0,1 мг смР--мес. Поведение циркония в воде-при температуре 316° Сив паре при температуре 400° С одинаково. С повышением давления пара при температуре 400° С от 1 до 100 ат скорость коррозии увеличивается в 20—40 раз. Во время облучения в воде при температуре 283° С и потоке нейтронов 10 п см скорость коррозии сплава циркония была в 50 раз выше, чем без облучения. Срок службы защитных оболочек из циркония примерно два года.  [c.297]


Большинство окислов металлов, образующих пленку на поверхности стали, — рыхлые и газопроницаемые (например, окислы железа, никеля и марганца). С другой стороны, жидкая ртуть находится в равновесии с ее парами. Давление пара ртути над жидкой ртутью составляет  [c.304]

Что касается очистки от примесей, то примеси, давления паров которых у поверхности расплавленного металла равны по мепьшей мере 1-10 am, могут легко удаляться. В случае тантала это выражается в резком сниже-иии содержания таких металлов, как железо, никель, хром, титан и ниобий, и в уменьшении содержания элементов, образующих растворы внедрения. В табл. 4 представлены результаты анализа тантала электронно-лучевой выплавки.  [c.693]

Чтобы создать атомный пучок из паров металла, используют вакуумную печь дая плавки этого металла. Печь плотно закрывают крышкой, в которой есть небольшое отверстие в виде прямоугольной щели, называемой апертурой печи. Конструкция печи зависит от свойств того вещества, атомный пучок которого желательно получить. Выбор материала для печи также определяется температурой плавления и химическими свойствами вещества, так как он не должен вступать в химическую реакцию или сплавляться с этим веществом. При таких веществах, как Hg, Са, Zn, d и др., необходимое давление паров которых достигается при сравнительно низких температурах, материалом для печи может служить фосфористая бронза, никель, медь или стекло при более тугоплавких веществах — сталь, молибден, тантал и др.  [c.65]

Существенная особенность припоев Си—Мп—Ni — их склонность к образованию пористости в паяных швах, выполненных с нагревом в кислородно-ацетиленовом пламени. Эта склонность тем больше, чем больше в припое марганца и меньше никеля. Высокое давление пара марганца при высоких температурах дает основание предполагать, что повышенная пористость швов, выполненных газопламенной пайкой с применением припоев системы Си—Мп—N1. обусловлена усиленным испарением марганца 130  [c.130]

Элементарная сера начинает разрушать черные металлы при температурах выше 200 °С. Скорость коррозии при температурах выше 600°С становится пропорциональной парциальному давлению паров серы в степени п, причем п варьирует от 7б до /2. В ряду возрастания коррозионной стойкости к действию расплавленной и парообразной серы металлы располагаются следующим образом серебро С никель, медь < железо, углеродистая сталь < высокохромистая сталь < хром < хромоникелевая сталь < хастеллой < < алюминий < золото.  [c.132]


В качестве примера в табл. 16 приведены давления паров алюминия, никеля, кремния и молибдена при температурах такого же порядка, как температуры, используемые в экспериментальных установках при алитировании никеля и силицировании молибдена циркуляционным методом.  [c.45]

Давление паров (—lg р) алюминия, никеля, кремния и молибдена, рассчитанное по различным исходным данным  [c.45]

В опытах по алитированию никеля циркуляционным методом температура алюминия не превышала 1300 К, а при силицировании молибдена температура в зоне расположения кремния была около 1500 К, давление паров в этих температурных условиях в соответствии с табл. 16 несколько меньше 10 мм рт. ст.  [c.46]

Хрупкость первого рода усиливается с увеличением скорости деформации и по своей природе является необратимой. Водородная хрупкость первого рода может быть прежде всего обусловлена газообразными продуктами, образующимися внутри металла при реакции диффундирующего водорода с примесями в металле или легирующими элементами. Так, например, в никеле, меди, серебре водород реагирует с окислами, которые, как правило, всегда имеются в том или ином количестве по границам зерен, в результате чего возникают пары воды под высоким давлением. Пары воды ослабляют силы сцепления между зернами и поэтому способствуют хрупкому разрушению. Это явление получило название водородной болезни.  [c.296]

Сплавы золото — медь характеризуются исключительно высокой стойкостью к коррозии и очень низким давлением собственных паров. Сплавы золото — никель также имеют низкое давление паров, но при этом обладают несколько большей прочностью при высоких температурах. Оба типа сплавов используют в качестве припоев в вакуумных системах.  [c.223]

При низких парциальных давлениях паров серы взаимодействие феррита никеля с элементарной серой описывается реакцией  [c.22]

При высоких парциальных давлениях паров серы образуется сульфид никеля по реакции  [c.22]

Исследования сухого трения чугуна в паре с никелем и сплавом константан при контактном давлении 0,2—0,4 МПа и скорости скольжения 1—8 м/с в вакууме (13,3 мПа) показали, что износ чугуна максимален при Гср ЗОО С. При 7 ср>300 С изнашивание уменьшается. Когда температура всех контактирующих неровностей достигает температуры плавления, износ чугуна минимальный при этом образуется белый твердый поверхностный слой, который занимает более 70% трущейся поверхности.  [c.20]

У паровых котлов, рассчитанных на 240 атмосфер при температуре пара 580 градусов, выходная часть пароперегревателя сделана из совершенно не похожего внешне на сталь матового металла. Он скорее напоминает олово или свинец. Но это сходство только внешнее матовый металл не только не плавится дри температурах плавления олова и свинца, но свободно выдерживает, будучи нагрет до красного каления, огромные давления наполняющего его пара. Этот удивительный сплав больше чем на 30 процентов состоит из хрома, никеля и других металлов.  [c.45]

Хорошую стойкость в паре при температуре 450° С и давлении 28 ат показал алюминиевый сплав с концентрацией 5,5% никеля, 0,3% железа и 0,1% титана [111,177]. После двух недель испытаний на поверхности образцов образовалась тонкая пленка продуктов коррозии. Изменение веса образцов составляло 0,03 мг/см . При  [c.203]

Нелегированный ниобий быстро корродирует в воде при температуре 350° С, а в паре — при температуре 400° С. Хотя ниобий высокой чистоты обладает более высокой стойкостью, однако ни один из нелегированных сортов его не пригоден для использования в горячей воде под давлением. С помощью легирования удается значительно улучшить коррозионную стойкость ниобия при указанных выше параметрах. Наиболее эффективно двойное легирование ниобия титаном, молибденом, ванадием и цирконием и тройное легирование его титаном, хромом и молибденом. Многие из этих сплавов в воде при температуре 350° С в условиях облучения подвергаются коррозии менее значительно, чем цирконий. На поверхности сплавов образуется пленка [111,225]. Дисперсионно твердеющие стали А17-4РН (с концентрацией 15—17% хрома, 3—5% никеля, 3—4% меди, 0,25—0,4% ниобия и тантала) устойчивы в насыщенной воздухом воде при температурах до 350° С. Карбиды титана, вольфрама, тантала не стойки в воде, содержащей кислород.  [c.232]


Из сказанного следует, что при любой заданной температуре давление пара сплава должно быть ниже, чем давление пара чистого металла, и в первом приближении определяться по закону Рауля. Приводимые в работе Дэшмана [8] примеры иллюстрируют эту закономерность. Так, в сплаве железа с 25% (ат.) Ni при 1200 С давления паров железа и никеля при нагреве сплава должны быть соответственно равны 1 10 и 3-10 мм рт. ст. Полагая справедливым действие закона Рауля, считаем, что давления паров железа и никеля при нагреве сплава должны быть равны соответственно 7,5-10 и 8-10 мм рт. ст. Из этого можно сделать вывод, что железо будет испаряться примерно в 10 раз быстрее, чем никель. Отсутствие достоверных экспериментальных данных о скоростях испарения компонентов сплавов тугоплавких металлов, а также сложных систем позволяет пока считать, что ориентировочные данные о закономерностях испарения сплавов при нагреве в вакууме могут быть получены только на основе закона Рауля. При этом следует еще раз подчеркнуть, что закон Рауля можно применять только для сплавов, являюш,ихся в исследуемом интервале температур твердыми растворами. Если же второй компонент сплава (даже при небольшом его содержании в сплаве) не образует с основным металлом твердого раствора, а находится в виде включений второй фазы, то к такому сплаву рассмотренный закон не может быть применен.  [c.28]

Представляют интерес исследования, результаты которых характеризуют прочность межатомных связей в кристаллической решетке в растворе хрома в никеле. В работе Е.З.Винтайкина [ 28] кнудсеновским методом определения давления пара в сочетании с методом радиоактивных изотопов оценены упругости паров хрома для сплавов никель-хром,  [c.35]

Пайка в вакууме. Бесфлюсовая пайка с применением разреженного газа при давлении ниже Ю Па называется пайкой в вакууме. При создании в печи или контейнере вакуума с определенной степенью разрежения парциальное давление кислорода становится ниже упругости диссоциации оксидов. Эти условия необходимы для диссоциахдаи оксидов и предупреждения повторного окисления поверхностей паяемых деталей при нагреве в процессе пайки. В вакууме обычно паяют медь, никель, вольфрам, титановые сплавы, высоколегированные и жаропрочные стали. Сплавы, содержащие в своем составе значительное количество алюминия или хрома, при пайке в низком и среднем вакууме требуют дополнительного флюсования, так как оксиды алюминия и хрома очень устойчивы, имеют малое давление пара и начинают испаряться при высоких температурах, близких к температурам их плавления.  [c.531]

Чувствительным элементом датчика является тонкая гигроскопическая пленка раствора хлористого лития или поливинилбуте-раля, нанесенная на чистую поверхность цилиндра, выполненного из негигроскопического и неэлектропроводного материала. После выдерживания пленки в атмосфере влажного воздуха наступает состояние равновесия между давлениями паров воды в растворе соли и во влажном воздухе. На влагочувствительную пленку бифилярно наматываются два разомкнутых электрода из никеля или платины.  [c.280]

Высокие характеристики прочности, пластичности при комнатной и высоких температурах, хорошая коррозионная стойкость, малое давление пара и технологичность сплавов системы Си—Ni использованы при разработке припоев для пайки сталей и никелевых сплавов, применяемых, в частности, в вакуумных приборах. Температура пайки этих припоев выше, чем температура пайки меди. Снижение температуры пайки припоями на основе Си—N1, не содержаш,ими цинка, марганца и фосфора (или содержаш,ими их в количествах, не оказываюш,их заметного влияния на упругость пара), может быть достигнуто введением в них кремния и бора. Кремний, введенный в эти сплавы, заметно повышает их коррозионную стойкость, жаростойкость, а также благодаря образованию соединений с никелем — и прочность при дисперсионном твердении (табл, 39). Введение кремния способствует повышению прочности и кислотостойкости припоев в серной кислоте.  [c.131]

При повышенном содержании кислорода в никеле и его сплавах контакт с водородом может вызвать водородную хрупкость и водородную болезнь этих сплавов. Было показано [106, 107], что наводороживание образцов никеля, содержащих 0,024 вес.% Ог, при 800—900 °С приводит к их резкому охрупчивйнию. В то же время аналогичный отжиг в водороде никеля с 0,004 вес.% Ог не приводит к заметному изменению его механических свойств. Хрупкость в последнем случае наблюдается только при быстром охлаждении и особенно при испытаниях на изгиб. Авторы связывают возникновение водородной хрупкости с водородной болезнью— образованием и ростом трещин по границам зерен под давлением паров воды, образующихся в результате взаимодействия кислорода и водорода по границам зерен.  [c.429]

Состав. Содержание Н 0 варьирует в широких масштабах в зависимости от давления паров воды . Формула мон<ет писаться несколько иными способами, как. например, MgSiOs-HjSiOs-reHjO. [Монгет содержать значительные количества никеля никелевый сепиолит).]  [c.591]

Электрохимическая коррозия наблюдается также в некотором диапазоне температур выше точки росы. Например, точка росы хлороводорода влажностью 79 % составляет 108 °С, а коррозия титана даже при 120 °С идет со скоростью 10 мм/год и прекращается только при 130 °С. Авторы работ [29, 30] объясняют это, как и в случае коррозии железа и никеля во влажном хлоре, пониженным давлением паров воды над продуктами коррозии металла в хлороводороде [29].  [c.44]


Вернемся теперь к применению тантала для изготовления сеток и анодов электронных ламп [Л. 10]. Оонов1НЫ м преимуществом тантала при примшении его электронных лампах являются высокая температура плавления, низкое давление паров, пластичность, возможность легкой его- оварки и формовки, химическое сродство к кислороду, азоту и углероду в диапазоне температур его работы в лампах, а также возможность обезгаживания при температурах, значительно превышающих рабочую, и, наконец, сопротивляемость химическому воздействию того же порядка, что и у стекла. Следовательно, изгото вленные из тантала детали могут быть хорошо обезгажены во время откачки и служат затем в качестве газопоглотителя после отпайки лампы. Поэтому для использования перечисленных выше свойств лампу необходимо конструировать так, чтобы в ней можно было применять танталовые детали. Для обезгаживания при откачке танталовых анодов и сеток необходима температура 2 000° С, а для того чтобы тантал служил газопоглотителем во время нормальной работы лампы, его рабочая температура должна лежать в области 700 С, т. е. выше температур, имеющих место при использовании таких материалов, как никель или молибден. Поэтому необходимо предусмотреть возможно сть рассеивания тепла излучением через колбу лампы или отвода его соответствующим охлаждением без повреждения плотности спаев со стеклом и снижения механической прочности конструкции лампы в целом.  [c.209]

Все это говорит о том, что процесс восстановления хлоридов кобальта и никеля алюминием проходит сложно, и записанные выше уравнения реакций могут отразить только самые общие стороны процесса. В действительности алюминиевый порошок обязательно несет некоторое количество кислорода, что, несомненно, должно отразиться на кинетике процесса и его механизме. С другой стороны, будучи получен из расплавленного алюминия, этот порошок является носителем растворенных газов, в частности водорода. Выделение его из восстановителя в ходе процесса также может наложить отпечаток на ход процесса. Следует отметить, что при использовании металлической мелкой стружки в качестве восстановителя для СоС1г, полученной из слитка алюминия зонной очистки, характер кривых давления пара несколько изменился (рис. 7) за счет отсутствия начальных участков взаимодействия. Энергичное развитие реакции началось при температуре 430—440° С. Однако неподчинение газовым законам продуктов реакции и в этом случае имело место.  [c.51]

Таким образом, алюминий оказывает положительное влияние на свойства никеля и его сплавов, так как повышает механические и технологические свойспва этих сплавов. Алюминий не испаряется при высоких температурах, потому что парциальное давление паров алюминия доспигает атмосферного лишь при температуре около 2000°С, что Ихмеет особо важное значение при работе деталей радиоламп при повышенных температурах в условиях высокого вакуума.  [c.283]

Применение в технике. Ртуть, так же как вольфрам, молибден, никель и стекло, является основным материалом вакуумной техники. Кроме того, она особенно важна как вспомогательный материал для получения и измрре-аия ваиуума. Развитие вакуумной техники до ее современного уровня было бы невозможно без ртути, В настоящее время она несколько утратила свое монопольное положение в связи с получением масел с низким давлением паров, таких, как апьезоновое или силиконовое масло.  [c.428]

Мельхиор с повышенным содержанием никеля МНЖМц 30-0,8-1 отличается высокой коррозионной стойкостью в пресной и морской воде и паре. Широко используется в морском судостроении в виде конденсаторных труб, работающих при повышенных скоростях воды, повышенных давлениях и температурах, где латунные н медные трубы неприменимы.  [c.232]

Типичные кинетические кривые физической адсорбции воды на свежеобразованной поверхности металлов (цинк, алюминий, медь, никель и т. д.) приведены на рис. 18 для различных давлений водяных паров. Во всех случаях наблюдается быстрое заполнение поверхности адсорбатом, причем кинетика адсорбции воды в интервале времени от 1 до 30 мин описывается уравнением Рогинского — Зельдовича.  [c.46]

Сочетание высокой коррозионной стойкости и удельной прочности в жидких щелочных металлах и их парах делает молибден и его сплавы одним из лучших материалов в автономных энергетических установках для космических аппаратов. В последние годы в этом направлении достигнуты значительные успехи. Например, по данным работ [169а, 186а], турбинные лопатки (см. рис. 1.2) из молибденовых сплавов TZM успешно выдержали длительные испытания в опытных установках, где качестве рабочей среды использовали пары цезия и калия. После испытания в опытной турбине в течение 3000 ч при температуре 750°С и скорости потока 160 м/с потеря массы лопаток составляла всего лишь 0,029%, а максимальная глубина коррозии менее 0,025 мм. Благодаря высокому модулю упругости и высокому пределу текучести, молибденовые сплавы типа TZM являются хорошим материалом для пружин, работающих в жидких металлах при температуре 800—1000° С. Такие пружины, покрытые никелем или дисилицидом молибдена, могут быть использованы также в окислительной среде при высоких температурах. Высокий модуль упругости, отсутствие взаимодействия с жидкими металлами и хорошая теплопроводность сделали молибден и его сплавы одним из лучших материалов для изготовления прессформ и стержней машин для литья под давлением алюминиевых, цинковых и медных сплавов.  [c.146]

Как уже указывалось выше, с повышением температуры изменяется не только величина, но и характер коррозии. По данным Е. Нахтигаля [111,177], скорость коррозии алюминия при постоянной температуре зависит от давления. Так, при температуре 90°С чистый алюминий в течение шести суток оставался практически без изменений. В тех же условиях, но при давлении 15 ат, создаваемом азотом, алюминий подвергался коррозии. В перегретом паре алюминий значительно более стоек, чем в воде, даже если вода имеет меньшую температуру. Так, в паре при температуре 250° С и атмосферном давлении алюминий в течение нескольких суток корродирует незначительно. Однако в воде при температуре 105° С и давлении 1,2 ат (за тот же промежуток времени) алюминий заметно корродировал. В некоторых работах [111,165] приведены данные об успешном применении сплавов алюминия для изготовления пароперегревателей, работающих при различной температуре при 300— 350° С и даже при 400° С. При одинаковой температуре скорости коррозии алюминия в воде и влажном паре соизмеримы. Если же на алюминий попеременно воздействуют влажный и перегретый пар, может иметь место язвенная коррозия. В этом случае алюминий менее стоек, чем при постоянном погружении в воду с той же температурой [111,175]. Индукционный период уменьшается с ростом температуры и давления [111,178]. При температуре пара 370° С и давлении 2,8 ат индукционный период составляет 260 час, при той же температуре и давлении 160 ат он сокращается до 2 час. При температуре 460° С с увеличением давления от 30 до 180 ат индукционный период соответственно уменьшается с 72 до 2 час. При увеличении температуры на 25° С коррозионная стойкость алюминиевых сплавов резко понижается [111,178]. Так, сплав алюминия с концентрацией 1% никеля и 0,5% железа, стойкий при  [c.182]

Хорошей коррозионной стойкостью в воде обладает цирконий и его сплавы, которые к тому же имеют более высокую по сравнению с алюминием прочность при повышенных температурах. При изготовлении оборудования должен применяться цирконий, очищенный от примесей, особенно от азота. Коррозионная стойкость циркония в водяном паре заметно снижается при повышении давления. Практически применение чистого металла возможно до 300—350" С. Небольшие добавки (около 1%) железа, никеля, олова и хрома способствуют улучшению антикоррозионных свойств циркония. Аналогичный эффект достигается легированием циркония добавкой 2% палладия или 2% молибдена. Из сплавов циркония за рубежом широко применяют циркаллой-2 (1,5% Sn, 0,12% Fe, 0,05% Ni, 0,1% Сг). Этот сплав обладает коррозионной стойкостью в воде при температуре до 350° С.  [c.287]



Смотреть страницы где упоминается термин Никель Давление паров : [c.224]    [c.55]    [c.280]    [c.164]    [c.246]    [c.383]    [c.166]    [c.48]    [c.39]    [c.607]    [c.144]    [c.148]    [c.158]    [c.183]    [c.307]    [c.343]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.438 ]



ПОИСК



Давление паров

Давление паров, см Давление паров

Никель

Пара давление



© 2025 Mash-xxl.info Реклама на сайте